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ABSTRACT 

This report introduces the reader to radiation hydrodyna mics 

(RH) and discusses its application to fireballs in the 

atmosphere. After formulating the ba sic equations of RH I 

special attention is given to the radiative transfer problem. 

Several methods for solving the equations of transfer are 

touched upon but special emphasis is placed on the two 

strea m method with a frequency averaging procedure I which 

is specifically designed for use with finite zone sizes. A 

version of the FIREBALL code which utilizes this approach is 

described. The physics of fireballs is illustrated with the 

exa mple of a one kiloton detonation at sea level density and 

without interference from the ground .. Some remarks are made 

on scaling procedures for extending the results to higher yields 

and altitudes. Estimates are made of the validity of the models. 
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FOREWORD 

"Thermal radiation ,i is electromagnetic radiation emitted by matter in a 

state of thermal excitation. The energy density of such radiation in an en

closure at constant temperature is given by the well known Planck formula. 

The importance of thermal radiation in physical problems increases as the 

temperature is raised. At moderate temperatures (say I thousands of degrees 

Kelvin) its role is primarily one of transmitting energy; whereas at high 

temperatures (say I millions of degrees Kelvin) the energy density of the radi

ation field itself becomes important a s well. If thermal radiation must be 

considered explicitly in a problem I the radiative properties of the matter 

must be known. In the simplest order of approximation I it can be assumed 

that the matter is in thermodyna mic equilibrium "locally" (a condition called 

local thermodynamic equilibrium I or LTE) I and all of the necessary radiative 

properties can be defined I at least in principle. Of course whenever thermal 

radiation must be considered J the medium which contains it inevitably ha s 

pressure apd density gradients and the treatment requires the use of hydro

dyna mics. Hydrodyna mics with explicit consideration of thermal radiation is 

called "radiation hydrodynamics" . 

In the past twenty years or so I many radiation hydrodynamic problems 

involving air have been studied. In this work a great deal of effort ha s gone 

into calculations of the equilibrium properties of air. Both thermodynamic 

and radiative properties have been calculated. It has been generally believed 

that the basic theory is well enough understood that such calculations yield 

valid results I and the limited experimental checks which are possible seem to 

support this hypothesis. The advantage of having sets of tables which are 

entirely calculated is evident: the calculated quantities are self-consistent 

on the basis of some set of assumptions I and they can later be improved if 

calculational techniques are improved J or if better assumptions can be made. 

iii 



The origin of this set of books was in the desire of a number of persons 

interested in the radiation hydrodynamics of air to have a good source of 

reliable information on basic air properties. A series of books dealing with 

both theoretical and practical aspects was envisaged. As the series materialized, 

it was thought appropriate to devote the first three volumes to the equilibrium 

properties of air. They are: 

The Equilibrium Thermodynamic Properties of Air, 
by F. R. Gilmore 

The Radiative Properties of Heated Air, 
by B. H. Armstrong and R. W. Nicholls 

Tables of Radiative Properties of Air, 
by Lockheed Staff 

The first volume contains a set of tables along with a detailed discussion of the 

basic models and techniques used for their computation. Because of the size of 

the related radiative tables and text, two volumes were considered neces sary . 

The first contains the text, and the second the tables. It is hoped that these 

volumes will be widely useful, .but because of the emphasis on very high tempera-

tures it is clear that they will be most attractive to those concerned with nuclear 

wea pons phenomenology, reentry vehicles, etc. 

Our understanding of kinetic phenomena, long known to be important and at 

present in a state of rapid growth, is not as easy to assess as are equilibrium 

properties. Severe limitations had to be placed on choice of material. The 

fourth volume is devoted to general aspects of this topic. It is: 

Excitation and Non Equilibrium Phenomena in Air, 
by Landshoff, et al. 

It provides material on the more important processes involved in the excitation 

of air, criteria for the validity of LTE and special radiative effects. 
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A discussion of radiation hydrodynamics was felt to be necessary and 

the fifth volume which deals with this topic is: 

Radiation Hydrodynamics of High Temperature Air, 
by Landshoff, Hillendahl, et al. 

It reviews the basic theory of radiation hydrodynamics and discusses the 

application to fireballs in the atmosphere. 

The choice of material for these la st two volumes wa s made with an eye 

to the needs of the principal users of the other three volumes. 

Most of the work on which these volumes are ba sed wa s supported by the 

United States Government through various agencies of the Defense Department 

and the Atomic Energy Commission. The actual preparation of the volumes 

was largely supported by the Defense Atomic Support Agency. 

We are indebted to many authors and organizations for assistance and we 

gratefully, acknowledge their cooperation. Weare particularly grateful to the 

RAND Corporation for permission to use works of F. R. Gilmore and H. L. Brode 

and to the IBM Corporation for permisSion to use some of the work of 

B. H. Armstrong. Most of the other authors are employed by the Lockheed 

Missiles and Space Company, in some cases as consultants. 

Finally I we would like to acknowledge the key role of Dr. R. E. Meyerott 

of LMSC in all of this effort I from the initial conception to its realization. 

We are particularly grateful to him for his constant advice and encouragement. 

Criticism and constructive suggestions are invited from all readers of 

these books. We understand that much remains to be done in this field, and 

we hope that the efforts represented by this work will be a stimulus to its 

development. 
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Preface 

This volume reviews the ba sic theory of radiation hydrodyna mics and 

discusses the application to fireballs in the atmosphere. The first chapter 

starts with a formulation of the basic equations and goes on to discuss 

schemes for translating these impossibly difficult equations into manageable 

computing procedures. As a companion to this chapter we have added 

Appendix A with a version of Hillendahl' s FIREBl\LL code I which runs without 

inputs of a classified nature. 

Chapter 2 deals with the .physics of fireballs. The main discussion is 

devoted to the description of a one kiloton detona tion at sea level. That 

section has nearly all been written by H. L. Brode of the RAND Corporation 

but a few passages have been added by the editor. One of these deals with 

opaque precursors to shocks whose Significance to the thermal output was 

noted by Hillendahl since the original version was written. The section on 

other yield and altitudes wa s also written by the editor. 

The summary chapter examines the reliability of the results and how 

this is affected by approximations I incomplete ba sic information and other 

deficiencies in the present state of the art. 

I would like to thank Dr. H. L. Brode for his contribution and the 

RAND Corporation for permis sion to include his work in this volume. 

R. K. M. Landshoff 
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Chapter 1. RADIATION HYDRODYNAMICS 

1. 1 Introduction 

A nuclear detonation deposits a large amount of heat energy in the 

air around it. The heating phase is of relatively short duration since the 

energy arrives in the form of X-rays which come either directly from the 

surface of the exploding bomb or from the shock heated air in the immediate 

vicinity of that surface. 

Following the X-ray deposition the air approaches local thermodynamic 

equilibrium (LTE). The method of calculating the subsequent explosion 

history which is discussed in this chapter ignores this period where the 

air relaxes to LTE. Before we proceed we take a short look at the validity 

of that assumption. 

* The kinetics of relaxation processes has been discussed in Chapter 6, (4) . 

The relaxation time depends on the ambient air density and on the final 

temperature as shown in Fig. 6.1 (4). 

For a detonation at sea level practically all the energy deposited 

by X-rays gets stuck in a relatively small volume and raises the temperature 

to very high values. Under these conditions relaxation times are very 

short. For a detonation at a high altitude a sizeable fraction of the X-ray 

energy is deposited at large distances and produces a lesser temperature 

rise because of the inverse square drop of the flux density. The lower 

air density and the lower temperature both contribute to increase the 

relaxation time. 

* DASA-1917-4, from now on referred to as (4). 
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As an example, let us consider a detonation with an X-ray yield of 

10 20 ergs radiating like a blackbody with a temperature of 10 7 oK occurring 

-3 at an altitude somewhat below 50 km where the air density is 10 times 

less than at sea level. A crude estimate, using the asymptotic theory of 

Section 4.4, (4.) shows that about 10% of the X-ray energy is deposited at 

distances more than about 80 m where it produces temperatures less than 

12,OOOoK. In Fig. 6.1 (4) one reads off that the relaxa.tion time at that 

temperature and a density --.Q... = 10-3 is 10- 6 sec. Within that sphere 
Po 

it takes less time and on the outside more time to relax the air to its 

equilibrium temperature. Thus 10% of the energy relaxes at a relatively 

slow rate and the assumption that one can ignore the relaxation period 

is not entirely justified in that case. 

The assumption of LTE is essential to the classical formulation of 

hydrodynamics. It means that the temperature is a well defined property 

of the fluid and that pressure and internal energy are known functions of 

density and temperature. Without LTE it would be much more difficult to 

formulate the conservation theorems for momentum and energy. 

* In the theory of radiative transfer (Chapter 2, (2) , which together 

with hydrodynamics accounts for the expansion of fireballs, LTE also is 

an assumption of major importance. Without it a quantitative prediction 

of the interaction between matter and radiation would be a hopelessly 

complicated problem. 

Despite the very important role played by radiative transport 

radiation does not as a rule account for a significant fraction of the energy 

density and the pressure within a fireball. Even for blackbody radiation, 

* 
DASA 1917-2, from now on referred to as (2). 
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which is not present unless the gas is opaque, this contribution is small 

unles s the temperature exceeds values like 25 eV. Temperatures of that 

magnitude are only maintained during the very early stages of fireball 

histories. In this period the fireball cools down by radiative expansion 

and this goes so fast that there is essentially no hydrodynamical motion. 

In formulating the hydrodynamic equations one can therefore ignore the 

energy density and pressure of radiation because by the time they get 

into the act they are indeed negligible. 

During the early period of fireball expansion twhere radiative transfer 

of energy is important) the shape generally appears to be almost spherical, 

at least at low altitudes where the size is small compared to the scale 

height of the atmosphere. Asymmetries which are hidden by the opaque 

outer layers may possibly occur due to instabilities at the bomb air interface, 

but we shall ignore these. Not much is known about such phenomena in 

any case and adding the complication of asymmetry would compromise the 

already complicated problem of treating radiation flow. In line with the 

current state-of-the-art we shall therefore discuss only spherically symmetric~l 

problems. 

1.2 Basic equations of radiation hydrodynamics 

The differential equations for calculating fireball histories are the con

servation relations of ordinary hydrodynamics but with a rather complicated heating 

term in the energy equation. They can be written in either Eulerian or Lagrangian 

form. The two forms are chara cterized by a different choice of independent space 

variables. In the Eulerian system these are the coordinates in real space and in the 
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Lagrangian one they are coordinates which are tied to the particles 

of the fluid. In the Lagrangian system the coordinates in real space 

which describe the position of a specified particle are used as dependent 

variables. In the Eulerian system this is manifestly impossible and the 

motion is described in terms of the fluid velocity. 

The other dependent variables which characterize the thermodynamic 

state of the fluid are the same in the two systems and can be chosen from 

a set which includes the density p or its reciprocal the specific volume 

V I the pres sure P I the temperature T I the internal energy E I etc. 

It may be convenient to keep several of these variables in the equations 

but one must keep in mind that they are interrelated and that the thermodynamic 

state is specified by any two of them. 

The Lagrangian method is especially useful in problems with a high 

degree of symmetry where one needs only one coordinate to specify the 

position. Having restricted ourselves to spherically symmetrical problems 

we shall therefore adopt the Lagrangian approach. 

We define the Lagrangian radius r of a given particle as its radius 

at time zero, i.e. before it has started to move. The actual radius of the 

particle at any time is denoted by the capital letter R. The hydrodynamic 

problem is to find R(r, t) • 

If stands for the initial density the specific volume at any 

instant is 

v = ~ (R)2 
Po r 

(conservation of mass) (1.2-l) 
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Introducing the velocity 

u = aft 
~t 

the other conservation equations are 

~u = 
~t P

I

O 

(;R)2 ::. ..... ~ (conservation of momentum) 

. 
VQ (conservation of energy) 

. 
where the rate of heating per unit volume Q still needs to be worked out. 

As it stands the energy equation has a serious defect because it does 

not allow for the entropy raise produced by a shock. To get around this 

(1.2-2) 

(1. 2-3) 

(1. 2-4) 

we adopt the method of Von Neumann and Richtmyer (l950) and add a pseudo-

viscous pressure 

{ (t Z ;'\I) 0 (a UJa rl if Q.!:!.< 0 
~r 

q = (1 .2-5) 

if ~u > 0 
~r 

to the regular pressure in Eqs. (1. 2-3) and (1. 2-4). The constant t has 

the dimensions of a lengthi it will be further specified when we go to 

finite difference equations. 
. 

The radiative heating rate Q at some point is the difference between 

absorbed and emitted power per unit volume 

(1.2-6) 
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The emitted power presents no problem because the blackbody intensity 

B is a known function of temperature. There is no angular dependence 
\I 

and the integral over frequency can be expres sed in terms of the Planck 

mean, Eq. (2,4-15), (2). One obtains: 

Q• = 4\l-p (J T4 
em 

(1.2-7) 

where (J is the Stefan Boltzmann constant. 

The absorbed power is much more difficult to evaluate because the 

calculation of the intensity I is a major task. To carry this out one should 
\I 

in principle solve the equation of transfer (Eq. (1.3-1» along every ray 

pas sing through the pOint in question and for all values of the frequency. 

One of the major difficulties of such a program arises from the fact that 

the optical properties of air in a large part of the relevant temperature range 

result mainly from transitions between molecular levels. The spectrum 

associated with the major band systems consists of an enormous number of 

lines and the absorption coefficient fluctuates from large values at the 

line centers to small ones between the lines. Because of these "windows II 

the radiation at some point generally comes from pOints along the ray which 

are an appreciable distance further back. This distance varies just as 

strongly with frequency as U I 
. \I 

itself and it is therefore not proper to use 

local averages of I-l I 

\I 
in a frequency interval containing, say I a few lines. 

Instead, it is in principle necessary to integrate the transport equation at 

a large enough number of frequencies within everyone of these intervals. 

This correct approach clearly demands an impossible amount of computational 
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effort which has to be avoided. There are two limiting situations where 

this can be readily done. The one situation arises fer a transparent medium 

where the optical depth I...l IL 
v (L being the size of the radiating region) 

is uniformly small compared to unity. In that case Iv is very much smaller 

than 

have 

B and one can neglect the absorption altogether. In that case we v 
Q = - Q whichweknowfromEq. (1.2-7). em 

In the opposite extreme of an opaque region for which I...l IL» 1 
v 

one can simplify Eq. (1.2-6) directly. The heating rate can in that case 

be expressed in the farm* 

Q = 
.... ..... 
'I • F 

The flux vector is given by Eq. (2.5-8) I (2) which we rewrite in the form 

F = 4 ..... 4 
3" "R a 'I T 

(l. 2-8) 

(1. 2-9) 

Tables and graphs of the Rosseland mean free path "Ror the related opacity 

** can be found in (3) I p. 12 I pp. 446 to 449 and pp. 622 to 625. 

The above method of treating radiative transfer was originally 

developed by Eddington nearly half a century ago. In its application it 

was however I limited to astrophysical problems where it was not coupled 

to hydrodynamics. An early discussion of the use of this so-called diffusion 

approximation to radiation hydrodynamics has been given by Magee and 

Hirschfelder (1953). The first calculations carried out with this method 

to appear in the open literature were presented by Marshak (1958). 

* 

** 

The operator V is defined in Eulerian space. In plane or spherical 
geometry it is well known how to express it in Lagrangian form. 

DASA 1 91 7 - 3 . 
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1.3 Average absorption coefficients 

In the temperature range where molecular transitions occur and 

where optical depths are neither uniformly s mall nor uniformly large one 

has to resort to approximation schemes. It is clearly necessary to apply 

some kind of frequency averaging which will do a fair amount of violence 

to the "correct approach" of solving the transfer equation for a few million 

values of the frequency. The basic mathematical problem is that one wants 

to average the product ~v I ~ which enters in Eq. (1.2-6) as well as in 

* the transport equation 

dlv = 
ds 

~ I (B - I ) 
v v v 

by equating the average of the product and the product of the averages, 1. e. 

(1.3-1) 

one wants to replace ~ I I 
v v 

by ~ I I 
v v and that is of course not correct. 

The quality of this approximation depends on the amount of fluctuation among 

the values of ~ I 

V 
and I 

v 
that are being averaged and in a line spectrum 

this fluctuation may be quite severe. A number of averaging schemes have 

been proposed and are used in various computing programs. 

One scheme divides the spectrum into groups (10 to 100) whose widths 

are chosen fairly narrow at the low energy end and wider as the energy goes 

up. Within each interval a Rosseland type average is obtained. Such group 

averages have been used, for example, in the SPUTTER program of AWFL as 

reported in RTD-TDR-63-3l28 Vol. II and in a code developed by J. Zinn 

of LASL. 

* Strictly speaking I the left hand side of this equation should contain the 
oI 

additional term 1 T but because of the large value of the light velocity 
this time depende~Je is usually left out. We note further that light rays are· 
straight lines in Eulerian space and in this section we temporarily abandon 
the Lagrangian system. 
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A second method of averaging uses the average transmission function 

(Eq. (2. 6-12b), (2) 

Tr {J.! '\Is) = _1_ J 
~\li 

~vi 

-~' s 
e v d\l 

and the slab absorption coefficient related to it by Eq. (2.6-19) I (2) 

~\I (s) = - 1 In Tr (~ , s) 
s v 

These averages are defined for slabs of thickness s in which the 

temperature and density of the air are uniform. The intervals ~\li are 

much narrower than the groups of the first mentioned method. The spacing 

between intervals is 10 to 20 times as large as the interval size. The 

calculated averages depend smoothly on the frequency so that it seems 

reasonable to interpolate. The slab average is made to order for use in 

finite difference equations where the fluid is divided into zones. It has 

been used in a number of LMSC codes which will be discus sed later in this 

chapter. 

A variation of the group average procedure consists of subdividing 

the frequencies within a group into subgroups which are ordered according 

to the magnitude of the absorption coefficient rather than by frequency. 

The spread between the absorption coefficients within each subgroup is 

( 1.3-2) 

( 1.3-3) 

obvious ly less than between those in the entire group and subgroup averages 
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will therefore be more meaningful. To use subgroup averages we must also 

introduce individual intensities for each subgroup. Even the use of only 

two subgroups would improve the accuracy considerably. A short-cu t for 

the calculation of two subgroup absorption coefficients consists of fitting 

the average transmission function in the form {Eq. (2.6-46). (2). 

Tables of 

- ~ IS 

Tr (~ IS) = 1 {e 1 + 
v 2 

~I and 
1 u 2 are given by Churchill et a!. (1963). We 

don It know of any code which has utilized this type of average. 

1. 4 Solution of the equation of transfer 

Having obtained an average absorption coefficient which permits us 

to replace the average product ~v Iv by the product of averages ~v Iv 

* the transfer equation becomes 

dIv = 
ds U

v 
(s - f ) 

v v 

The formal integration of this equation along a ray is straightforward 

and leads to 

* 

hV ' - T ) 
(s:) e dr v 

o 

The absorption coefficient is still meant to include the correction factor 
for induced emission (Eq. (2.2-11a), (2) and the prime is left out for 
convenience of writing only. 

10 
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S 

TV = T ).) = f ii)·I) d. I = T (s ') 
T\) \) 

So 

The difficulty arises because one has to determine the value of this 

integral for all the rays through a given point to evaluate the rate of 

absorption of radiative energy at that pOint. This is required for carrying 

out the angular integration in Eq. (1.2-6). 

There are basically two approaches to this problem. One is the brute 

force approach to follow this program directly and to evaluate ~ (5) along 

(1.4-3) 

a large number of rays. This approach has been used in the SPUTTER program 

with one tangential ray through the center of each zone. Fig. 1-1 shows 

how these rays are combined to obtain the various values of I\) at the 

center of zone 4. Of the 7 rays which are drawn 3 are redundant because 

of symmetry and one obtains 3 different values of 

in and 1 grazing the zone. 

I 
\) 

going out, 3 gOing 

In the other approach one defines certain moments, i.e. angular 

integrals of I\) which now depend only on the radius and not on the 

direction. To solve for these moments one integrates a system of coupled 

linear differential equations which are only approximately correct but which 

give exactly the right answer when one considers the limit where the 

diffusion approximation applies. Such schemes h ave been used Widely 

in astrophysics and are discussed in great detail by Chandrasekhar (1960) 

and Mustel (1958). Some of the more sophisticated schemes use a large 

number of moments but quite good results can be obtained by restricting 

that number to two and using only the outgoing and ingolng flux which 
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are defined as the integrals 

cos 8 > 0 

(cos 8 < 0) 

where 8 is the angle between the ray and the radial direction. 

We consider firs t the case of plane geometry where the medium 

is stratified in plane parallel layers. This geometry has been studied 

extensively by astrophysicists and applied to the radiative equilibrium 

in the outer regions of stars where it is indeed unnecessary to worry about 

the curvature. By treating the radial coordinate R as if it were a 

cartesian coordinate the angle e of a ray remains constant along the 

ray path. The optical path length between two surfaces is therefore 

simply the optical path length along the normal divided by I cos 8/ • 

We shall expres s this in terms of the optical depth conventionally 

defined by astrophysicists as the optical path length measured radially 

(1. 4-4) 

inward from the surface of a star (or in our case a fireball) Ii. e. the integral 

R s 

T (R) 
\) =J 0: (R') dR ' \) 

(1.4-5) 

R 

To evaluate as given by Eq. (1.4- 2) for an ou tgoing ray we place 

far enough inside that the factor e is essentially zero; for an 

ingoing ray we start at the surface where 1\)(so) = 0 • The first term of 

12 



Eq. (1.4- 2) can therefore be left out in both cases. For the exponent 

under the integral one can write 

, \I \I 
I
T' ' - T' 

T \I - T \I = - . cos 8 

and for ou tgoing and ingoing rays one obtains 

I = 1 
\I 1 cos 81 

r 

f B (R') ~ (R') \I \I 
IT" -T' I 
~ \lcos e\l dR' ; cos 8 > 0 

o 

r 
s 

f B)R'l ii)R'l 

r 

cos 8 < 0 

T' '- T I \I \I 
e cos e dR' 

Entering these expressions into Eq. (1.4-4) one obtains the outgoing and 

the ingoing flux 

where 

r 

F\I+ = 2TT f B)R') I1)R') E2 ~T\I' - 'T)) dR' 

o 

r s 

Fv_ = 2IT f Bv(R'l il)R'l E2 ~1'v' - 1'vI) dR' 

r 

CD 

E2(T) = f e-UT u- 2 du 

1 
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A useful approximation is obtained if one replaces / cos 8/ in 

Eq. (1.4-7) by an average c = cos e. Subs ti tu ting the approximate 

form of Iv±' into Eq. (1. 4-4) gives expres sions similar to those in 

Eqs. (1.4-8) but the exponential integral is now replaced by a simple 

exponential function, i.e. we have the approximation 

The average intensities calculated from the approximate fluxes 

satisfy the differential equations 

dIV± --
c dR + II (B - I ) - i'-"v v vi. 

These average intensities are therefore identical with the intensities in 

the directions for which / cos e / = c. The idea of the two stream model 

with intensities in a characteristic direction goes back to Schwarzschild 

and Schuster who suggested to use 1 c = -
2 

is c = t which gives the correct net flux 

in the high opacity limit. 

14 
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dB 
~ 
dR 

(1.4-10) 

(1.4-11) 

(1. 4-12) 

(1.4-13) 



In spherical geometry one has no s1mple r1gorous expressions for 

I like those given in Eqs. (1.4-7) from which to derive two stream 
\I 

equations. It seems I nevertheless I reasonable that one should be able 

to use equations which are essentially of the same character but with 

minor modifications to maintain conservation of energy. It is easy to 

see that this is achieved by the pair of equations 

With the definition given in Eq.( 1.4-11) one obtains the outgoing and 

incoming flux simply by multiplying the corresponding intensities 1\1+ 

by a factor TT • From the total integrated net flux 

:1 = f (F + - F ) d\l \I \1-

one can finally obtain the heating rate 

Q= 

for use in the energy equation. 

1. S Finite difference equations 

It is obviously impossible to find exact analytical solutions to the 

equations of RH and one must be satisfied with approximate numerical 

(1.4-14) 

(l.4-1S) 

(1.4-16) 

solutions. To obtain these one replaces infinitesimal increments of dependent 

as well as independent variables by finite differences. Mathematically RH 
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can be characterized as an initial value problem and the methods and problems 

arising in treating this by means of finite difference equations have been 

. thoroughly discussed by Richtmyer (1957). We shall review some general 

considerations and then turn to ques tions which are specifically relevant 

to our problem. 

In a finite difference scheme continuous variables are replaced by 

discrete ones but there are numerous possibilities for doing this. Thus 

one can regard the discrete values of a variable as representing either 

the values of the corresponding continuous variable at a set of discrete 

meshpoint or the average values between meshpoints. There are other 

variations but they are not needed in the following discussion. One can 

treat some variables in the first and others in the second manner. To 

indicate the actual choice one can use integral subscripts for variables 

defined at the meshpoints and half integral ones for those defined in the 

intervals. It is convenient and natural to let Ri and Ui represent 

the radius and the velocity of the particle at the meshpoint 1 and this 

leads almos t automatically to defining V i+ 1/2 I Pi+ 1/2 I £i+ 1/2 I 

and T1+ 1/2 as the averages of specific volume I pres sure I internal 

energy densi ty and temperature in the interval between the meshpoints 

i and i+ 1 • 

Another element of choice enters in the methods used for advancing 

variables in time. Almost all variables are defined at meshpoints in time 

which are indicated by integral superscripts. It may I however I be useful 

to define the velocity between meshpoints which can be indicated by half 

integral superscripts. With this definition and abbreviating the right hand 

side of Eq. (1.2-3) by a (for acceleration) that equation and Eq. (1.2-2) 
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lead to the integration procedure 

Having obtained Rn+ lone can then obtain Vn+ 1 by differencing 

which follows from Eq. (1. 2-1). So far we have not bothered to look at 

alternate schemes because the procedures outlined above are very straight-

forward and there seems to be no good reason for doing anything more 

elaborate. In the purely hydrodynamic case I i. e. if Q = a the energy 

equation (1.2-4) can also be integrated Vf~ry simply. Centering the 

difference equation at (n+ 1/2) leads to 

If E is expressed as a function of V and p this equation can be 

n+l solved for p I the one variable which is still unknown. Anticipating 

the problems which arise when one has radiative heating it is really more 

useful to expres s both E and p as functions of V and T and to 

solve Eq. (1.5-3) for Tn+1. Either way one has to solve for only one 

unknown at a time which causes no real difficulty even though it may have 

to be done by iteration. 

This situation changes drastically when the radiative heating rate Q 

becomes important. The heating term to be added on the right hand side of 

Eq. (1.5-3) should be centered at the level tn+ 1/2 like the remaining 
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part of the equation but the temperature distribution from which it must 

be calculated is only known up to the time n t • There are two major 
. 

avenues of attack. One is to forget about centering 0 and use its 

value as calculated at tn. If this is done one can still solve explicitly 

for TnT 1 and this is as the explicit method of integration. 

In the other attack one uses the properly centered heating rate 

1 (. n+ 1 • n) "2 \0 + 0 . This means that the equation which describes the heating 

in anyone zone depends on the values of Tn+ 1 in all zones so that one 

has to solve a large number of equations (one per zone) simultaneous ly. 

This implicit method involves a considerable amount of algebraic labor. 

If centering was only required for accuracy it would not be worthwhile to 

go to all this trouble because one could increase the accuracy more easily 

by reducing at. What is really involved is the question of mathematical 

stability which we shall briefly discuss. 

It is physically clear that a fluid responds to any pressure or temperature 

disturbance by a motion or heat flow which counteracts the disturbance. In 

an integration by means of difference equations which uses too large time 

intervals it may happen that the disturbance is overcompensated so that an 

excess tur ns in one step into a deficit, in the next step again into an excess 

etc. If the magnitude of this alternating disturbance increases each time any 

small disturbance will eventually cause the solution to blow up. In principle 

one can cure such an instability by taking at small enough but this could 

seriously increase the running time of a problem. 

There are two cases where the s tabil1ty condition has been obtained 

analytically. The firs t arises when the dominant mode of energy transfer 

is of a hydrodynamic nature. The maximum a t in this case is found as 
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follows. One calculates for each zone the traversal time t:. tiT 1/2 = 

(Ri+ l-RrV s (i+ 1/2) of a signal traveling with the local sound speed. Going 

through all intervals one then finds the smallest, say t:.tmin • The time 

increment is then limited by the so-called Courant-condition 

where k is a numerical factor near unity which depends on the integration 

scheme. In the scheme where one uses the three equations at tre beginning 

of this section one has k = 1. 

When radiative heating dominates, the stability analysis has been 

carried out for the case where one can use the diffusion approximation. In 

the explicit scheme the limit for a t is proportional to ~Ra R2 which 

decreases together with the Rosseland mean absorption coefficient of the 

air. If the air is fairly transparent a t is limited to very small values 

and this makes an explicit calculation very costly in computer time. The 

implicit method does not have this trouble and is in fact unconditionally 

stable. On the other hand it is of course also time consuming to solve a 

large number of coupled equations simultaneously. One can attempt to 

approach the implicit solution by iteration. On the first go-around one 

can advance T by the explicit method. With the advanced temperature 

O
on+l Oon+l/2 __ 

distribution one can then work out , form the average 

1 I· n • n+ 1) n+ 1 2" \0 + 0 and reevaluate T • This procedure can be repeated 

several times and if it converges it will lead to a stable solution. The time 

step a t is now limited by the condition that the solution should converge. 

In contrast to the stability condition of the explicit method this limit of at 
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is inversely proportional to -
~R and independent of the zone size. The 

actual convergence criterion is almost equivalent with imposing a limit on 

the fractional energy change per time step within every zone. That form 

of the condition is easy to use and experience has shown that a fraction 

like one percent ensures the convergence. In a purely implicit procedure 

there is no such limitation on the magnitude of the time step. For the 

sake of accuracy one should also impose a limit on the fractional energy 

change per time step but it does not need to be as small. This limit can 

be allowed to vary from zone to zone to require greater accuracy in those 

zones where the changes make a significant contribution to the overall picture. 

It is obvious that the allowed time interval changes throughout the 

calculation. For reasons of economy one should always run fairly close to 

the maximum without, however increasing Ii t too abruptly. To change <5 t 

generally requires some interpolation (or extrapolation) and all programs 

nowadays have provisions for carrying the necessary changes out automatically. 

Although the preceding arguments were based on the diffusion approximation 

they apply equally in the more general case. It is true that one can not 

readily obtain analytic stability or convergence criteria but experience 

with numerical calculations indicates the same pattern. 

In addition to the various decisions described above one also has to make 

a choice on zone sizes. There are two parts to this decision relating to the 

total number of zones and to their relative sizes at different radii. Part one 

involves a compromise between conflicting requirements for accuracy and economy 

because it takes a large amount of computer time to use very many zones. 

This is amplified if the choice of 15R also limits the time step as in 

hydrodynamic calculations where Ii t '""" 6 R and even more in the explicit 
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calculation of radiative transfer where 
2 ot.-voR. 

Part two involves a judg ment as to where the really significant 

changes are taking place and it is of course at those regions where one 

should use the finest zoning. In the course of a calculation the location 

of significant changes moves so that one has to make provisions in the program 

to detect this and to react to it by rezoning. Furthermore the overall radius 

of the fireball changes during an average calculation by as much as 3 orders 

of magnitude so that rezoning is also necessary to keep the number of zones 

at a more or less constant level. 

The pseudo viscous pressure q introduced in Eq. (1.2-5) is a device 

for calculating the entropy rise behind the shock. Without the damping 

mechanism provided by q the changes induced behind the shock overshoot 

and produce lasting oscillations which physically do not belong there. A 

large value' of t will kill these improper oscillations most effectively 

but at the cost of making the transition region very wide which is also 

incorrect. Experience has shown that .(, = 26R will stop the fake 

oscillations reasonably fast without spreading the shock transition over 

more than about 4 zones. 

One can also express q in terms of 

Richtmyer suggests to use the formula 

with 

(p .(,)2 
q _ ---=o~_ 

- V 
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SO that the transition region covers the same number of zones near the center 

and further away from it. The numerical factor a should again be 

approximately 2. 

In differencing either Eq. (1.2-5) or (1.5-5) one is led to expressions 

at half integral times. To obtain the acceleration in Eq. (1. 5-1) it should 

be known at tn but to achieve that, one would have to use an implicit 

rou tine. In this case that is not worthwhile since the use of q is an 

artifice anyway and it is customary to have q lag half a time step behind. 

In the energy equation (1. 5- 3) q is automatically in step. 

The total energy which is obtaired by summing the kinetic and internal 

energy within the fireball and the energy carried away by radiation should 

always stay at a constant level. The internal energy should in principle 

contain a part due to radiation but as mentioned in section 1.1 this does 

not amount to much. A trivial point, but one which must nevertheless be 

kept in mind is, that one should only count the excess over the energy in 

the ambient unheated air; otherwise the nominal energy would grow with 

the volume of the fireball. 

It is important to keep track of any violations of energy conservation 

which may creep in through the use of finite difference schemes. Any 

program should therefore contains a routine for checking energy conservation. 

The pOint at which R. H. goes beyond standard methods comes with 

the calculation of radiative transfer. The various methods require the 

evaluation of certain space integrals before one can calculate the energy 

deposition in a specified zone. Because of the very strong temperature 

dependence of the integrands these integrals depend critically on the 

radial dependence of the temperature. The common method of approximating 
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this dependence by assuming constant values of the temperature within the 

zones may lead to serious errors. An attempt to correct these has been 

made by Hlllendahl (1964). 

We shall present the analysis for the plane case which is formally 

easier. The transition to spherical geometry can be made later and 

requires only minor changes which are rather obvious. The starting pOint 

is Eq. (1.4-12) but before one has carried out any frequency averaging. 

Thus the line character is still preserved and Ilv and Iv+ are 

rapidly changing functions of frequency. Integrating Eq. (1.4-12) 

across the zones which are separated by the interface at Ri one finds 

for the outgOing and ingoing stream (represented by the upper and lower 

sign 

-].6 -1 
2 \i i+-, 2 3 

I = I + i+- leT -v+,i v_, - 2 

r v,i 

1 

I 

B 
v 

3 1 

-- t. 2 v,i ..... 1 
e dT 

v 

I 

where B 
\i 

and are taken at the same pOint R , and 

1 

6 v,i t.v ,i + 1/2 = 

To carry out the integral we use the first two terms of the power expansion 
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and obtain 

I v+ ,i 

-{- 1 (~) f -(1 + d. 6 - ) - ~ 6v , i -+ 1/2] - 3 c1T 2 v Ii -{- 1/2 e 
v 

(1.5-10) 

Integrating over frequency we obtain formally 

Z-{- i + (Bi 1 - A+ 1) -{- i(d~) W+ i 
-' -' dT-' 

i 

(1.5-11) 

where 

(1.5-12) 

Z-{- i = J 
_I 

I v + , i 
1+ i 
_I 

3 - / -2'6,i+12 
e dv (1.5-13) 

(1.5-14) 

(1.5-15) 

and where Bi is the integrated intensity 

B = f B dv = Q.. T4 v IT 
( 1.5-16) 
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at the pOint Ri • No limits of integration have so far been specified 

and one is free to divide the spectrum into any set of frequency intervals. 

As a first approximation H1l1endahl used the entire spectrum without 

subdividing it. 

Before Eq. (1.5-11) can become operational one has to define 

the average optical depth T which enters in the derivative and 

one has to face the difficulty of an unknown ratio I /1 entering into 
v 

the definition of Z. 

The procedure devised by Hillendahl for obtaining an average for 

T is specifically intended for use with finite zone sizes. The 

prescription is designed to keep the emissivity of a zone of constant 

density and temperature unchanged if one replaces the frequency 

dependent optical depth t:. Tv = I-lvt:.R by its average t:. T • Thus, 

i.e., by making this substitution in the exponent of Eq. (1.5-14) one 

is led to 

A= J ~ e 

3 -- ~ t:.R 2 v dv = e 

3 ,...., 
-- t:. 'T 2 

B 
We note that the factor ....Y..J... in Eq. (1.5-14) is taken at the edge of 

Bi 
the zone. Since this ratio varies only very s lowly with T we will 

take it at the center of the zone instead, so that there is only one 

emissivity A per zone and not different ones for the ingoing and out-

going ray. In the above integral for A one can clearly replace the 

rapidly varying exponential by a smooth one in which one uses the slab 

absorption coefficient ~v as defined in Eqs. (1. 3-2) and (1. 3-3). In 
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the new expres sion 

3 - R -"2 \1 v !::,. 
e dv 

the zone with !::,.R enters not only as a factor in the exponent but also 

as one of the variables in 0. = ~ (p, T, !::,.R) • Various methods for 
v v 

calculating ~ ,which apply when the dominant absorption is molecular I 
v 

atomic or free-free, have been described in (2). The results are tabu-

lated in and have been used in the above integral to obtain A{p IT ,!::,.R) • 

It is convenient to express this in terms of a mean absorption coefficient 

0H (p, T ,LlR) = - ~ tn A/!::,.R and to write: 

A= e 
_1 f,~ LlR) 

2 \f-LH 

Depending on !::"R as well as on p and T I ~H differs from the 

Rosseland mean (il
R

) and the Planck mean C!1 p) which depend only on 

p and T. 

For the function W, which should in principle be calculated from 

Eq. (1. 5-15) we use an approximation and set 

( 
3 ) - ~ ~H LlR 

W = 1 - 1 + "2 ~H !J. R e 

which looks reasonable and leads to the correct energy deposition when 

~H!::"R is large enough that one can use the diffusion approximation. 

As in the case of A we are using only one W per zone. 
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The coefficients Z... i as defined by Eq. (1.5-13) depend on 
-' 

the unknown spectral distribution 1\)+ ,i/1+,i at the pOint i • 

Since the difference equations (1.5-11) apply only to the integrated 

intensities 1-+ i their solution does not give us any direct information 
-' 

about the spectral distribution and we must rely on educated guesses 

for the latter. The basic clue which we follow is that the radiation 

at some point i comes by and large from a zone (the radiating zone) 

which lies an optical depth unity behind that pOint in the direction 

where the stream comes from. The distribution has therefore the distri-

bution of a blackbody source at the temperature TR of the radiating 

zone but modified by selective absorption in the intermediate zones. 

When we apply this model we dis tinguish 3 typical situations 

for the ingoing and 3 for the outgoing stream. This comes from the 

peculiar te'mperature dependence of mean absorption coefficients. For 

all these means I whether we talk of - -
~R ' ~p or ~H ,one can 

distinguish a central temperature range where -~ is large and the 

low and high T ranges where it drops to very low values. 

The temperature profile of a fireball is typically a monotonically 

decreasing curve. While the central temperature 1s still large this 

profile looks like the sketch in Fig. 1-2 with a central section where 

~ is small so that radiative transfer maintains a nearly constant 

temperature. Beyond t hat plateau comes a more opaque region with a 

relatively large temperature gradient and at the pOint where the 

temperature has dropped to where the air is again transparent the profile 

becomes again more level. Superimposed on this one finds usually 
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some structure due to shocks or other disturbances but this does not 

alter the main conclusion that there are 3 distinct regions. 

In the opaque intermediate region the spectral distribu tion I /1 
\J 

can be identified with that of a blackbody at the local temperature so 

that one is led to Z+ = Z_ = A • In the interior region the radiation 

comes mainly from its boundary where it is in contact with the opaque 

region. Since the temperature profile is quite level one does not commit 

a significant error by identifying I /1 again with the local 
\J 

B /B 
\J 

which varies much less with T than either B or B itself. As 
\J 

in the previous case we therefore use the approximation Z = Z = A • + -

Only in the outer section do we have to make a more careful choice 

of I /1 and only for the outgoing stream. The ingoing stream carries 
\J 

essentially no energy and it doesn't matter much what one does. The 

simplest choice is again to set Z_ = A • 

The pOint where it really counts that our model should adequately 

represent the true physical nature of radiative transport comes when we 

consider the outgoing stream as it emerges from the opaque region. 

The absorption to which this stream is subjected is largely due to 

molecules.. In calculating which parts of the spectrum are and which 

are not transmi tted one is greatly helped by the character of the energy 

dependence of ~ • Fig. 1-3, which is a typical example taken from 

SACHA type calculations shows that ~ is a very rapidly rising 

function of frequency.. From ,this graph we find by inspection that a 

zone of abou t 10 m thickness would transmit practically no photons 

above 5 eV and practically all photons below 3.8 eV.. Approximately 

one can assume that there is a critical photon energy 
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vicinity of 4.4 eV at which the transmitted flux is sharply cut off. For 
B 

a stream which starts out as a blackbody spectrum ~ = b
v 

(T
R

) 

one finds that the transmitted fraction of the energy is a known integral 

Vc 

L (TR, hv cJ = J bv (TRJ dv 

o 

The procedure for determining Z+ for any zone i - 1/2 outside 

the opaque region starts out with finding the radiating zone which belongs 

to it and whose temperature has been designated as T
R

• We assume 

that the model spectrum I starts out there as a blackbody spectrum 
v 

Bv (TR) • Any of the zones through which it passes will not transmit any 

radia tion above its cu t-off energy hv c and the model spectrum which 

finally enters into zone i - 1/2 remains I = B (T
R

) up to the v v 
lowest cut-off energy h\)min encountered by the stream but is reduced 

to I\) = 0 above h\)min. If zone i - 1/2 has a lower cut-off 

h\) c, i- 1/2 we set therefore 

= L(TR h\) c, i- 1/2) 
L(TR h\)min) 

If the cut-off energy is equal to or larger than hV min the model 

spectrum would lead to Z+,i = 1 which can It be right and indicates 

that the sharp cut-off approximation is too crude to fit this case. An 

upper limit for Z can be obtained by setting it equal to the local A 

since the bulk of the true spectral distribution lies at somewhat higher 

energies than the local blackbody spectrum. Thus the true I will v 
suffer somewhat more absorption than 
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Z < A • 

The modifications which are necessitated by going to spherical 

symmetry can be written down without difficulty. One only has to note 

that Eq. (1.4-14) differs from Eq. (1.4-12) by the factor R2 which 

multiplies both I and B. Clearly this factor must enter when one 

modifies the corresponding set of Eqs. (1. 5-11). As we write down the 

modified set we incorporate the result that the coefficients A and W 

depend only on the zone and not on the direction of the stream, and obtain: 

The A and Ware as before given by Eqs. (1.5-19) and (1.5-20) and 

Z+ i is nearly always equal to Ai + 1/2 except in a few zones just 
-' 

outside the opaque region where one should use Eq. (1. 5-22) •. 

In the two stream model the fluxes differ from the intensities by a 

factor TT as shown in Eq. (1.4-11). The relation carries over when 

one performs the frequency radiation SO that 

= 

Having determined the intensities by solving the set of Eqs. (1.5-23) one 

is therefore ready to evaluate 
.... 

- 'V • F which according to Eq. (1.2-8) 

gives us the radiative heating rate. Thus one obtains: 
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which is the final equation of the two stream method. Before leaving it 

let us take a somewhat closer look how this equation handles a zone in 

the opaque region. In any region where one replaces Z+ and Z_ by 

A one finds that Eq. (1.5- 23) reduces to: 

from which one obtains in turn 

(1.5-26) 

(1. 5-27) 

In an opaque region this simplifies still further because the factor 
-Iii 6R 2 t-"H 

e 

in Eq. (1.5-20) becomes negligible compared to unity. One can therefore 

set W = 1 and obtain: 

and since B = (J T4 this is clearly equivalent to Eq. (1.2-9) i. e., to 
n 

the basic equation of the diffusion approximation. This is of course no 

2 
surprise because we picked cos e = '3 precisely in order to achieve this 

equivalence. 

In an opaque region, the diffusion approximations contains all 

the physics needed for the calculation of radiative energy transfer and 

it 1s superior to other methods as far as speed and possibly accuracy of 

calculation are concerned. Hlllendahl ' s formulation of the two stream 
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method au tomatically leads to this procedure'. More elaborate methods 

such as the multiple ray technique do not, but it is of course possible 

to switch to a diffusion theory calculation when one considers an opaque 

region. Thi s is indeed done in the SPUTTER program. 

In the form outlined in this section the two stream method is not 

applicable at high altitudes where the ambient air has a density less 

/ 
-4 

than about p Po = 10 • At such densities the air becomes transparent 

in the spectral region where B has its maximum and the fireball has 
\J 

no opaque region. There is still a significant amount of radiation at 

frequencies above and below this window but one has to devise new 

methods for dealing with this problem. At these altitudes the mathematical 

difficulties are further aggravated by the non-spherical energy deposi tion 

which takes place when the mean free path of x-rays get large compared to 

the atmospheric scale height. Eventually, say at about 
-6 

p/po~ 3 x 10 

the air becomes transparent in all parts of the spectrum and thermal 

radiation is no longer a significant factor. 
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FIG. 1-1 RAYS CONVERGING UPON ZONE 4 WHICH ARE USED TO 
COMPUTE I AS FUNCTION OF ANGLE 

\J 
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Chapter 2. THE PHYSICS OF FIREBALLS 

2 • 1 In trodu ction 

A nuclear explosion in the atmosphere creates a fireball whose 

development depends in large measure on the physics of hot air. All 

of the previously discussed properties of hot air and all of the mechanisms 

for energy transport developed in previous chapters are a part of nuclear 

fireball physics. However I these energy transforming and transporting 

relations and the detailed knowledge of the properties of air find 

considerably wider application. They have or can contribute to the study 

of stellar dynamics I the nature of stellar atmospheres I the radiation 

from various astrophysical sources, and they can aid in the study of 

hypervelocity flight, upper atmosphere physics, aurora, and other atomic 

and molecular physics problems which involve high temperatures. 

It is certainly the case that the information presented in these 

previous chapters makes the conditions created in a nuclear explosion 

more understandable. Some knowledge of air heating mechanisms, of 

air excitation, of radiation transport, and of hydrodynamics, of absorption 

properties, and of the thermodynamics of air is necessary before a full 

description of a nuclear explosion can become more than heuristic. 

Much of the present knowledge about fireballs has been gleaned 

from test observations, but by far the greatest detail has come from 

numerical computer calculations, as have the quantitative estimates of 

fireball interior dynamics which appear in this chapter. Calculations of 

widely varying detail and sophis tication now abound, and it is not the 

intention in this chapter to review such results or analyze computing 

methods. Most current calculations rely for their measure of·success on 

the extent to which the physical concepts and properties covered in the 
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preceding chapters have been taken into account in a mathematical model. 

The principal objective of this chapter is to outline the physical features 

of nuclear fireballs and their thermal radiations, stressing where possible 

those factors which are most general and which provide the best under

standing on which to base predictions and extrapolations. The approach 

adopted is to begin by considering a small yield explosion (1 kiloton) 

at sea level and to describe the sequence of events which occur un

encumbered with interactions from the earth I s surface or inhomogeneous 

environments. This development will then be extended to higher yields 

and altitudes. There will be no attempt at completeness and no great 

concern for quantitative rigor I but it is intended to display as much as 

pos sible the current understanding of the physics of nuclear fireballs. 

2.2 One kiloton at sea level 

A one kiloton explosion in a sea level atmosphere provides an 

appropriate example for an initial examination of the sequence of events 

that constitute a fireball history. The now familiar usage of kilotonage 

and megatonage refers to the total energy release in a nuclear explosion 

with the usual metric prefixes for a thousand or a million and with the 

understanding that a ton of high explosive - TNT - releases 10 9 calories 

of effective energy I i.e., one gram of TNT is taken as equivalent to 

one kilocalorie or 4.185 x 10 10 ergs. 

For any nuclear explosion the sequence of events is remarkably 

complex. In following its development for this one kiloton sea level 

explosion, the reader may appreciate that the present understanding, 
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although not complete, has become quite detailed and much of it has 

grown directly from the material reviewed in this series of volumes. 

The nuclear energy is released in an extremely short time - a 

small fraction of a microsecond - and always in a small mass and 

volume. It is the properties of this small mass, constituting the 

weapon itself and its carrier that determine the early source of energy 

for the fireball, and some of these properties may influence the 

character of the later thermal radiation. Everything starts in this 

nuclear source and all of the initial radiations - gamma rays, neutrons, 

and x-rays - are generated by it. However, the air or other immediately 

surrounding material absorbs almost everything emitted within a few 

hundred meters and the nature of the observable fireball is largely 

determined by the properties ot'this surrounding air. For our exa mple 

of one kiloton in a sea level atmosphere, the air within a few feet of 

the weapon stops nearly all of the x-rays, and the prompt gamma rays and 

the neutrons have removal mean free paths of about 400 and 240 meters, 

respectively. These rapid absorptions make knowledge of specific 

details of the nuclear device largely unneces sary in describing the 

fireball phenomena. Consequently, we shall be able to proceed without 

reference to classified aspects of nuclear weapons and yet without 

significantly truncating our description of the fireball and its thermal 

radiations. 

The fraction of the energy which may be radiated out of the weapon 

as x-rays before it begins to blow apart under hydrodynamic action 

depends largely on its yield-to-mass ratio and to some extent on other 

construction details. This fraction may range from almost nothing at 

all (or a very small percent) to a significantly more than 80% of the total 
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energy generated (Glasstone, 1962; Brode, 1964 b). 

Before the air has had a chance to re-radiate any of the energy 

deposited by the x-rays, the bulk of this energy is concentrated in a 

relatively small sphere and at a temperature which is typically of the 

order of several million degrees K. There is, however, a small fraction 

of x-rays, from the high frequency end of the spectral distribution function, 

which penetrates to a distance of perhaps a few meters, and heats this 

shell to temperatures in the 10 I OOOoK range. Energywise this heating is 

insignificant but it makes a contribution to the fireball phenomenology 

which is of some interest. By consulting the table of mean free paths on 

* p. 447 of (3) we discover that this shell is opaque. As long a s it exists 

such an opaque shell hides the much hotter sphere on its inside and all 

that can be observed is the radiation from the shell itself, which is 

comparatively dim. 

This phase is always very short-lived and terminates when the 

radiation from the center floods into the shell and heats it up. During the 

next pha se the fireball can be characterized rather well as an extremely 

high temperature sphere of air surrounding the nuclear source and showing 

a fairly sharp temperature drop at its edge. The interior of this high 

temperature sphere may be at a fairly uniform temperature I and the whole 

may contain quite a large fraction of the nuclear explosion energy in the 

form of heat. Some small fraction always remains in the dense bomb 

vapors, but most of the early pha ses of the fireball development are quite 

independent of the details of the weapon deSign. The subsequent explosion 

and radiation behavior can be derived almost entirely from the properties of 

this hot air. Such a model will be less true in high altitude or space 

* DASA-1917-3. 
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environments where the immediate external surroundings fail to contain as 

thoroughly the explosion energy because they lack sufficient opacity or 

optical thickness. 

Throughout the explosion development, radiant energy is emitted by 

the fireball. That fraction which is transmitted by the cold exterior atmosphere 

is called thermal radiation. The rate of energy emission, or radiated power, 

has shape as shown in Fig. 2-1. If the opaque fringe layer has been penetrated 

early enough and if the instruments used for measuring the thermal power 

have sufficient time resolutions, the signal will include the early peak which 

is shown a's a dotted line. Otherwise, one sees the two-peak curve which 

is drawn as a full line. The explanation of this curve is an important 

objective of any theory. 

Although it is a rather simple exercise, it is instructive to note the 

rather small size of air volumes required to contain the large amounts of 

energy at the high temperatures created by the absorption of the initial 

flux of x-rays. The following table indicates the radii of spheres for a 

few examples of energy content and temperatures. These temperatures, 

of course, are too high for the air to remain that hot for very long, but in 

the immediate first fractions of a microsecond these radii are representative 

of the sizes and temperatures of the earliest (x-ray) fireballs. 

Size of Spheres of Sea Level Air Necessary 
to Contain 1 KT, 1 MT or 100 MT of Energy at 

Various Uniform Temperatures 

i%i~~~~~~rfeoK 1 KT 1 MT 

7 1/2 3/4 m 7.5 m 

6 1 10 

5 1 1/4 12 

4 1.6 16 

3 2.1 21 

40 

100 MT 

35 m 

46 

57 

74 

100 



In a very few microseconds I these fireballs would have grown much larger 

and much less hot by the continued diffusion of radiation into the external 

cold air. 

For most considerations these earliest phases of x-ray deposition and 

re-radiation remain both obscure and of little probable importance. When 

the flux of source radiations has been sufficiently intense as to completely 

strip the electrons from the air ions, then that volume of plasma can offer 

only Compton scattering as further resistance to the x-ray flux or as opacity 

to its own re-radiation. The most appropriate physical model for the con-

tinued expansion of this low emissivity, high energy density region is 

neither by hydrodynamics (which requires relatively long times to accelerate 

masses of gas) nor by radiation diffusion.which presumes many interactions 

over any appreciable temperature gradient. The growth of such a heated 

volume is a radiative process which can be characterized roughly by its 

emissivity I temperature I and volume together with the heat capacity of 

the external cold air. The single further physical characteristic necessary 

to include in a growth rate prediction is the fact that the surrounding air 

is essentially opaque to the radiations from this hot air. Detailed 

knowledge of the opacity between this blackness at cold temperatures and 

its transparent nature at sufficiently high temperature is at this pOint 

unnecessary. Thus I the rate of energy lost, expressed as a grey-body loss 

rate, is the rate at which energy is deposited in the cold air at the surface 

of the high temperature sphere, viz. I 

dW = 
dt 
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in which e is the emis sivity I T the temperature of the hot isothermal 

sphere I R its radius I and dW/dt the rate of energy change. When 

an appropriate specific heat is introduced, a differential prescription for 

the volume growth and temperature drop results. 

Following this approximation, one can express the rate of growth I 

dR/dt, in the same terms as 

dR = 
dt 

4 eaT 
Ep 

in which E represents the internal energy per unit mass, and p the 

density of the air just behind th e front, while T is the inner temperature. 

The usefulness of this approximation in estimating the rate of growth of a 

partially transparent fireball is largely dependent on the accuracy with 

which average or "effective'" interior temperatures I specific energies, 

and emissiv1ties can be chosen. During the most rapid expansion, the 

interior is likely to be considerably non-isothermal, i.e. I the interior 

may be more than twice as hot as the region just behind the front. The 

dependence on the fourth power of the temperature makes this rate quite 

sensitive to such differences. The most uncertain quantity is likely to 

be the effective emissivity, since it represents some average over the 

emitting region, and may also disguise some geometric dependence - not 

all the radiation being emitted radially. Appropriate choices of effective 

emissivity and temperature may make this simple formula appropriate 

for predicting the growth rate during the subsequent radiation diffusion 

phase. 

42 

(2.2-2) 



The temperature profiles illustrated in Fig. 2 -2 are typical of this 

early radiative growth for a one kiloton sea level burst. The curves 

represent the air temperatures as a function of radius for six selected 

instants in time. The dashed curve indicates the shock temperatures. 

It is the lowest temperature within the fireball at each of these times. 

After about 15 microseconds, the radiation diffusion growth becomes so 

slow that a shock wave begins to form, to compress the newly engulfed 

air and heat it to a temperature substantially below that of the radiatively 

heated inner sphere. With either the early radiative expansion or the 

subsequent adiabatic expansion behind the forming shock front, the inner 

temperatures drop with time in an approximately exponential fashion. 

During this early growth, the power radiated or the thermal radiation to 

pOints outside the fireball is not a significant fraction of the energy it 

contains. 'The time is short, the size is small, its opacities are high, and the 

fireball exterior so well shields the hotter core that the radiation out is 

les s than half a per cent of the available energy .. 

Of course I the radiative properties are influenced by the air density 

as well as by the temperature, and the gradual formation of the shock 

causes an appreciable increase in the air density at the fireball surface 

(as much as tenfold increase at sea level). In the process, the outer 

surface of the fireball passes from a rather diffuse radiation-driven front 

to a sharp, dense shock front. Fig. 2-3 shows some typical early density 

profiles, in which the shock is seen to grow and the fireball interior is 

seen to expand to much less than the external ambient density. 

Reference to the opacities for air as given in Volume 3 will 

43 



confirm that the shock front at these early densities and temperatures 

is quite opaque. For instance, at the 250 J.Lsec time of Figs. 2-2 and 2-3, 

the emission mean free path for a shock temperature of 30 ,000oK and a 

density of 8 times normal is about 0.01 cm. The fireball will expand to 

much lower temperatures and much larger size before anything behind 

the shock front will become visible. It is during this period that the 

thermal radiation rate decreases toward a minimum and the fireball appears 

to grow dimmer. (Fig. 2-1, before one millis econd.) 

If the fireball growth rate defined in Eq. (2.2- 2) is compu ted for 

the earliest time illustrated in the temperature profiles of Fig. 2-2, 

as suming for the moment an emis sivity of unity, the rate is about 

8 
4.4 x 10 cm/sec. This rate is too high by an order of magnitude in 

comparison with results of the numerical calculation example. The 

calculation showed that the expansion at this 1. 2 microsecond time was 

s till being determined by radiation diffusion. The calculation, however, 

also treated the earliest times by diffusion, and not (as suggested above) 

by transport within a transparent heated region with a radius less than 

one mean free path for the emitted radiation. The appropriate mean free 

path for diffusion is the so-called Rosseland average, hereafter abbreviated 

as Rmfp. The Rmfp is defined as 

in which AV 
co 

co 

S. 
.@L 

AV dT dv 
o 

Cd 

J dBv dv 
dT 

o 

is the spectral mean free path I the Planck function I 

and J dv 
o 

denoting integration over all frequencies. The Rmfp used in 
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the calculation approaches the Compton limit at high temperatures, however, 

and allows the rate of growth to be equally fast. In fact, without special 

consideration for relativistic effects, the diffusion growth can exceed 

even the speed of light. 

At the earliest time illustrated in Figs. 2-2 and 2-3, the fireball 

has grown to more than one mean free path in radius which reduces the 

effectiveness of the inner temperature in driving the continued expansion. 

A more heuristic interpretation of the growth rate formula allows the 

emissivity to be interpreted as a resistance parameter which reduces the 

growth rate to less than the blackbody rate for that central temperature. 

An alternative interpretation treats this efficiency factor as one which 

compensates for the use of the shielded innermost temperature when the 

effective temperature is at some radial position further out and is lower in 

value, i.e., e ~ (To/Ti)4 where To is the effective outer temperature 

and Ti is the screened central temperature. A crude measure of this 

correction and of an appropriate value for this viscosity constant might 

be the ratio of the Rmfp to the radius of the front, i. e ., the reciprocal 

of the number of mean free paths between the radiating interior and the 

front. For the diffusion approximation, such a correction might better 

be expressed in terms of the local temperature gradient as well. 
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The inner temperature of our example calculation at 1.2 micro-

6 0 
seconds is around 10 K (Fig. 2-2) and the density 1s still normal 

-3 mI 3 (1.29 x 10 g cm) (see Fig. 2-3). The Rmfp is a bit less than one 

meter, while the radius is about 3.2 meters. Taking e to be 1/3.2 

8 brings the growth rate down to about 1. 3 x 10 , which is still high 

compared to that for the numerical calculation. The mean free path 

6 0 decreases rapidly as the temperature falls below 10 K, however, and 

since the front at 1. 2 ~sec is at around half the interior temperature, 

a more appropriate mean free path might be between 0.92 (the value at 

6 0 5 0 10 K) and 0.12 (the value at 5 x 10 K). Taking the average of their 

reciprocals, i.e., averaging the opacities, gives about 0.2, so that 

the correction factor, e, becomes 0.2/3.2, and the corrected rate 

7 
becomes'" 3 x 10 which agrees well with the growth rate at that time 

from the detailed diffu sion calculation. 

The most appropriate specific energy and density values for use 

in the growth rate approximation are those just behind the front of the 

wave, since it is to those conditions that the cold air is to be heated, 

1. e. I it is that heat capacity that will absorb the subsequent radiation 

energy flux. Fig. 2-4 displays the specific energy profiles for this 

one kiloton example for the same time as those of Figs. 2-2 and 2-3. 

It is interesting to test the simple growth rate formula (Eq. 2.2-2) against 

the fireball growth speed that results from the numerical calculations. 

The calculation should show a rate faster than hydrodynamic shock 

growth until the radiation growth has fallen below the speed of hydrodynamic 

motions, and this simple form should show a comparable rate 

until that time I then a much slower rate as the shock wave takes over. 
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Fig. 2-5 compares these rates for the same time period as covered by 

the profiles of Figs. 2 -2, 2-3, and 2-4 and beyond. In these 

comparisons, several approximations are represented by dashed curves, 

while the numerical calculation rate is shown as a solid curve. The rate 

calculated as blackbody at the inner temperature, shown as circled pOints I 

is clearly too high at all times. Even when the lower temperatures of 

the outer edge of the hot region are used to determine a blackbody rate 

(the triangles A of Fig. 2-5) I the rate is at all times toa high. 

When the radiative resistance parameter is represented as the ratio ofthe Rmfp 

to the hot region radius, using the Rmfp evaluated at the hot interior 

temperature I the modified rate is still high at the early times when 

diffusion is still dominant (the square pOints of Fig. 2-5). It drops 

precipitously as the interior cools and becomes opaque at just the times 

when a shock begins to form (at about 10 microseconds in this example). 

Although this approximation is not correct in value, the sharpness of 

the decrease as hydrodynamics takes over can make it a useful indicator 

of the transition onset, and so a reasonable prediction tool. 

The more accurate estimate of the early diffusion growth rate, 

involving the averaged opacity between interior and front, is also more 

subject to error due to the difficulty in judging appropriate front conditions. 

These estimates are indicated in Fig. 2-5 by diamonds. These values 

are closest to the numerical calculations rate of growth at the earliest 

times when diffusion is the dominant mechanism. The earliest profile 

front temperatures are difficult to define because the front is not sharp. 

The rate of growth estimated at these approximate front temperatures with 
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a corresponding resistance parameter leads to the estimates indicated by 

the triangles t> in Fig. 2-5. Again, the shock formation times is denoted 

by a sharp drop in the rate estimated in this manner. Both of the blackbody 

rate curves (upper curves of Fig. 2-5) show a fairly sharp drop at shock 

formation time. Such a simple but uncertain formula may be preferable to 

the use of the radiation resistance notion in determining shock formation 

radius and time. Since in this range of temperature and densities, the Rmfp 

decreases with decreasing temperature as about the fourth power of the 

temperature, using the Rmfp as a correction factor then means that the 

adjustment parameter is as sensitive to temperature changes at the black-

body rate itself. Such critical opacity dependences may provide some sharp 

distinctions in estimates but at the same time present some hazards in 

chOOSing effective temperatures too casually. 

After shock formation, the rate of growth of the fireball should 

follow the shock growth itself until the shock cools to transparency. 

The shock speed for a strong shock is approximately given by 

. 
R s 

(y +l)P s s 
2p 

o 

where 'V = {P /p E )+1 P is the ambient air density and 
r S s/j S S ' 0 

and Es are shock front values of pressure, density and internal specific 

energy. This approximation is shown in Fig. 2-5 by the symbol <I . For 

the earliest times, the expansion is faster than this shock rate, but at 

later times it corresponds well. 
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Using the particle velocities (u) at the front and the density at s 

the front (through the mass conservation relation) provides the relation 

ugP s 
= 

The rate derived from corresponding values of and for the 

numerical calculation is indicated in Fig. 2-5 by triangles pointing down 

(\7). After nuclear shock catch-up this curve coincides with the solid 

curve for the directly computed rate. 

In the temperature region of interest, a shock can be pictured as a 

(2.2-5) 

sharp gasdynamic jump imbedded in a region of radiation-induced temperature 

vClriation (Fig. 2 -6). The internal structure of this type of wave ha s been 

investigated extensively by Zeldovich (1957), Raizer (1957), and Heaslett 

and Baldwin (1963), to name a few, all of whom employed the equations of 

steady continuum gas dynamics with gray radiative transport. 

The important feature of this picture is the temperature precursor which 

runs ahead of the sharp front. This precursor is created. by the radiation 

from the high temperature region behind the sharp front. One can estimate 

the temperature of the precursor by equating the power radiated by this 

front with the rate of heating in the precursor. In the resulting relation 

= a T 4 
s 

p , u and e p stand for the ambient air density, the shock velocity and 

the internal energy of the air in the precursor. From the latter quantity and 

the equation of state, one can then obtain the temperature of the precursor. 

Using the Hugoniot relations (Section 5.1 of (4)) and a simple analytic fit 
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to the equation of state ,one obtains a t sea level the relation 

(2 .2- 7) 

5 0 For a shock temperature of 10 K we calculate a precursor temperature of 

23 I OOOoK and note that a millimeter layer of air at that temperature is opaque. 

5 0 Up to the time when the shock temperature drops to 10K all the thermal 

radiation comes therefore from the precursor. To make a quantitative 

evaluation of the power radiated during this phase requires a more detailed 

analysis of the radiative transfer problem. Qualitatively one can see that 

the power must decrease with time and this is the decrease following the 

early peak in Fig. (2-1). 

5 0 As the shock temperature drops below 10K I the precursor cool s to 

where it gradually becomes transparent so that the radiation from the shock 

front begins to shine through. When this happens the power-time curve goes 

through the minimum which is shown in Fig. 2-1 as the shock precursor 

minimum (SPM). While the shock front gets more and more exposed I the 

power rise because of the exposure is eventually compensated by the 

temperature drop of the shock itself and at that time the power level reaches 

the maximum which is shown on Fig. 2-1 as the shock exposure maximum (SEM). 

During the pha se folloWing this maximum the rate of thermal radiation 

loss from the fireball can be characterized as that from a blackbody sphere 

at the shock front temperature and of radius equal to that of the shock 

radius. Although such a rate describes the fireball emission I the power 

observed at any distance will contain only that fraction which the cold air 
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outside the fireball is capable of transmitting. To a good approximation, 

that fraction can be calculated by assuming a simple cut-off in the trans-

mitted spectrum. Values of this fraction f(T s' 'J c) where 'J c is the 

frequency corresponding to a cut-off at 1860A (representing the edge of the 

02 absorption) are shown as functions of the temperature (Ts) in 

Fig. 2-7). The fraction is evaluated from a tabulation of the Planck radiation 

function and its partial integral by Gilmore (1956). The fraction is defined as 

X 
c 3 

X dx 
X e -1 

(2.2-8) 

where X = h'J /kT and hand k are Planck I sand Boltzmann IS c C s 

constants, respectively (h~ 6.625 x 10- 27 erg sec, k~ 1.380 x 10-16 erg/oK). 

During this phase which lasts until the shock temperature has dropped 
, 

to so Iowa value as to make the shock front transparent, the following 

simple expression characterizes the thermal radiation rate for an air burst 

nuclear explosion: 

P R1 471 R2 a T4 f(T ,'J ) (2.2-9) 
s s s c 

in which R represents the shock radius, T the temperature, a s s 

the Stefan-Boltzmann constant (5.672 x 10- 5 erg/cm2/deg
4
/sec) and 

f(Ts''J c ) the fraction passed by the cold air. 

Unit optical depth for most frequencies grows longer as the shock 

front cools, so that emission from hotter air behind the front begins to 

shine through. The shock front itself becomes fainter and appears to pull 

ahead of the luminous fireball, a phenomenon which is referred to a s the 
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"breakaway" (Gladstone, 1962, Section 2.110). Because the shock has 

been carrying the shock-heated air outwards with its expansion, a rather 

steep gradient in temperature is maintained just behind the front, so that 

a slight increase in unit optical depth exposes higher temperatures but at no 

appreciable decrea se in radius of effective radiating surface. At this time 

the power curve goes through the principal minimum (PMIN) in Fig. 2-1. 

Fig. 2-8 indicates the geometry of fireball temperatures (in cross

section) at a time somewhat beyond the time of minimum thermal power. 

While the thermal radiation increases, and while progressively deeper parts 

of the fireball are exposed I the hydrodynamic expansion dominates so that 

the visible or apparent fireball size continues to grow. Eventually, the 

luminous fireball stops expanding and the power output reaches the final 

maximum (FMAX) . 

Throughout this radiative and then hydrodynamic expansion of the 

fireball, right up to the time of minimum light intensity, something less than 

half of one percent of the total yield has been radiated out of the fireball. 

Both integrals of the measured power-time data from tests and of the simple 

expression given above for radiation from the fireball (as determined by shock 

front conditions) lead to an answer close to 0.44%. In the latter integral, 

the properties of the shock front are sufficiently well defined by almost any 

calculation - even those not accounting for radiation transport in the early 

phases, but necessarily taking account of the real gas properties of air. 

(e.g., Brode, 1956a,b). 

Since the air just behind the shock is much hotter and much 

less dense than the air at the front itself (see Figs. 2-2, 2-.3, and 

2-4), the rate of thermal radiation increases rapidly when that air is 

exposed, until the hottest temperatures at the back of the steep gradient 
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behind the shock front become visible and are radiating directly to the 

exterior. Thereafter, as the size of the radiating sphere shrinks and 

the interior cools, the rate decreases. This is the period in which the 

fireball history comes closest to the cooling wave notion expressed in 

a simple form by Zel'dovich, Kompaneets and Raizer (1958) and applied 

into a fireball theory by Bethe (1964). The notion is that a recognizable 

and fixed form cooling wave erodes the hot fireball interior, beginning 

at the exterior and working inwards. After the shock front has become 

transparent, such a cooling wave process is very likely operating, but 

it 1s not at first working into a .f1xed or uniform temperature or density I 

and it is not shrinking the fireball. The outward hydrodynamic expansion 

is still too strong. When the outer regions have all become sufficiently 

cool and transparent so that the inner radiation-heated region is exposed, 

then the conditions suggested for a cooling wave are approximated. Even 

then the temperatures are not constant and the surface area is shrinking 

rapidly I so that the cooling rate decreases. When this interior sphere 

has cooled to below about 10 I OOOoK, the whole of the fireball has become 

relatively transparent, and the subsequent radiation losses are characterized 

more by a grey body approximation, i.e. I characteristic of a volume of air 

of low emissivity - one of less than unit optical thickness .. It may also 

still be expanding adiabatically I and contributing energy to the shock 

growth. 

Temperature profiles spanning this period from principal minimum through 

final maximum and on to a transparent fireball are illustrated in Fig. 2-9. 

For a yield of one kiloton I the cooling wave is les s obvious as a wave 

than as a rather sudden depletion of the hottest interior region. At larger 
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yields, where more optical thickness is represented at every stage, 

the progress of a cooling wave from outside toward the center is more 

easily imagined (Brode, 1964a, Fig. 5, b Fig. 15). 

In this rather complex power radiated history of two or three maxima, 

as illustrated in Fig. 2-1, the final pulse represents a total energy of 30 

or 40% of the total yield of the nuclear device. When all the energy is 

accounted for, including that in the infrared which originates in shock 

heated air outside the visible fireball and is radiated only very slowly, the 

fraction may be even larger. 

There are several features of this one kiloton explosion that have 

not yet been mentioned and that are of lesser influence on the thermal 

radiation and fireball behavior at sea level, but which become relatively 

more important at other yields or altitudes. One such feature is a second 

shock wave which originates within the bomb vapors, traverses the early 

sphere of hot air behind the radiation front, and overtakes the strong 

shock that forms the fireball surface at later times. This debris or 

bomb shock is seldom in evidence in sea level explosions, and has lost 

most of its energy long before it overtakes the main shock, so that it 

contributes little to the fireball surface or thermal radiation histories. 

Because the hot interior of the fireball is for most of the fireball expansion 

a region of long mean free path, it is a region of nearly uniform temperature. 

When the case shock compresses and heats this air further, some of that 

heat is promptly re-radiated ahead, forcing this interior shock to behave 

isothermally rather than adiabatically. This isothermal shock can lose 

energy very rapidly by this means, and may persist only through the 
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continuation of its outward momentum. 

A history of the radii of this shock and other fronts in this kiloton 

example is shown in Fig.2-10. When this debris shock travels outward 

to the edge of the fireball, it encounters a sharp discontinuity in density. 

At .that pOint, a reflected shock originates and is returned inward to 

implode upon the Origin. Here again, is a phenomenon which has no 

consequence for this example, but may be prominent in high altitude events. 

The vaporized bomb expands along behind this debris shock,-' but at sea 

level is not visible until very late - after the second maximum in the 

thermal power. This bomb debris is not realistically treated in any of 

the usual calculations I since they invariably assume radial symmetry 

and allow no mixing or turbulent flow. When it emerges in the transparent 

fireball at late times, the vaporous debris has become highly turbulent 

and has evidently mixed with considerable fireball air. 

Although Fig. 2-10indicates a transition from radiation expansion 

to strong shock expansion, the radiation diffusion does not stop. As the 

shock brings down the density in the interior air, the opacity of that air 

decreases also, and the radiation is allowed to diffuse into some of the 

now shock-heated air. The dotted curve below the shock front curve of 

Fig. 2-1 0 indicates the position of the radiation front. Most of its outward 

excursion is due to the flow of air in the expansion behind the shock 

itself. At times later than shown in Fig. 2-10, the radiation front and the 

visible fireball drop behind. The short dashed curve near the end of the 

shock front curve of Fig. 2-10represents a position close to the fireball 

front - being the locus of points at 50000 K - with higher temperatures 

inside of that radius, and colder temperatures outside. 
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The continued flow of radiation is made more obvious in a plot of 

the temperature histories of several shells of gas representing the air 

that was shocked to a particular temperature, cooled in the subsequent 

adiabatic expansion, but then reheated by the radiation wave following. 

Such a set of curves are shay rL in Fig. 2-11, where at particles shocked 

5 a to 10 , 70,000 and 40,000 K the adiabatic cooling is arrested by the 

arrival of the radiation diffusion wave which causes that shell of air 

o to rise in temperature again. The air starting at the 20, 000 K shock 

pOint is never over-run by the radiation wave, i. e., the radiation wave 

stops before it gets that far, having run out of energy and not being 

aided by further expansion which would help to reduce the opacity of the 

cooler air in front of it. 

A great many nuclear weapon applications, tests, and effects 

interests involve the thermal and fireball effects of nuclear explosions on 

or close to the surface of the earth. -Many interesting and novel inter-

actions occur which are not evident in air bursts well away from the 

sur face. However, there is no intention of providing a review of these 

factors in this current effort. It should suffice to point out that all of 

the essential features which are described and followed here are also 

an important part of surface bursts, while the latter are further complicated 

by the early injection into the fireball of massive amounts of earth material, 

and by the geometric distortions of the fireball that occur as a consequence 

of shock and thermal reflections from the earth I s surface. The change in 

radiator shape from spherical to at best hemispherical or worse a partially 

obscured hemisphere means that the thermal flux to other points on the 

earth1s surface will be less than that from an air burst. Total flux at 
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pOints in the air above the burst may at the same time be increased. 

As the earliest pictures of nuclear explosions (G1asstone, 1962) 

clearly show a further consequence of the ground involvement is the 

"dust skirt- which precedes the fireball shock and largely obscures 

the base of the fireball. Although not visible in any of the pictures, 

there must also be vast amounts of earth shovelled into the hot fireball 

interior at an early time (Brode and Bjork, 1960), and this rna teria1 cannot 

fail to have profound effects on both the temperature and thermodynamic 

state of the fireball gases and on the opacities or optical properties of 

that region. Test observations .indirectly attest to the influence of such 

surface effects. 

Observations and measurements at very late times in the fireball 

history show that the radiation rate trails off with a very long tail (as in 

Fig. 2-1) and comes from shapes other than simple spheres. The fireball 

at late times is like a bubble in the atmosphere - having very low densities 

in its interior - and so it rises, and in rising breaks up at the bottom to 

transform itself into the familiar atomic cloud ring or torroid which rolls 

its way up through the atmosphere. The torroidal circulation that is 

induced is quite strong and serves to severely limit mixing of the hot 

fireball gases with the exterior cold air, thus prolonging the existence 

of air and debris at temperatures of thousands of degrees Kelvin, while 

the cloud rises in the atmosphere. When much earth material and/or 

water vapor is present, the late fireball remains opaque, and the rate of 

late radiation is more determined by the rate of turbulent mixing which 

brings hot gases to the cloud surface rather than by the radiation transport 

57 



properties alone. For an air burs t well above the surface, however, the 

late fireball becomes quite transparent, so that only a faintly luminous 

ring assures us that the rise and circulations are much the same as for 

lower burs ts • 

2.3 Other yields and altitudes 

The example of a one kiloton detonation at sea level contains all the 

basic physical phenomena which enter into consideration at [;ther yields 

and at altitudes up to about 70 km. The overall appearance is I nevertheless I 

appreciably different' since the individual events which are responsible for 

the various maximum and minima in Fig. 2-1 occur at different times. 

In carrying out a discussion of these changes I it is useful to note 

that the relation between shock radius and time can be approximately repre-

sented by a hydrodynamic scaling law. To formulate this we introduce the 

scaled variables 

where Y is the yield of the explosion and p = pip 0 the a mbient air 

density relative to that at sea level. In our 1 kiloton sea level exa mple the 

scaling factors are of course unity. 
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The scaling law is not valid until after the debris shock has caught 

up with the somewhat slower shock which is driven by only a fraction of the 

total yield. The scaling law can be deduced from the strong- shock solution 

for a point source (Taylor, 1950; and Sedov, 1959). This limits the validity 

of. the scaling laws at late times when the shock becomes weak. The law 

obtained in this manner takes the form 

* * 2/5 
Rs == k(t ) (2.3-3) 

where the subscript s denotes that the value is taken at the shock front. 

From the radius R == 20 m read off Fig. 2-10 for t = 1 msec, s 

one determines the proportionality factor to be 

k = 20 m (msec)-2/5 (KT)-1/5 (2 .3-4) 

In the above scaling law the scaling factors cancel out of the expression 

for the shock velocity 

dR s = 
* dt 

* 
= 2 

5 

* 

* -3/5 
k(t ) (2.3-5) 

which makes this velocity a function of t only. Applying the Hugoniot 

relations one can now show that the temperature Ts behind the shock is 

S9 



* also very nearly a function of t only. This is not an exact result because 

it depends on certain assumptions about the equation of state which are only 

approximately true. If one checks the prediction that T sis a function of 

the scaled time only against computed results, one finds that it fits the 

changes with yield at a given altitude very well. The changes with altitude 

at a given yield are not gi ven with quite the same accuracy, but are still 

suffiCiently close for most purposes. 

It should be noted that the above scaling procedure differs somewhat 

from the so-called Sachs scaling where one introduces the variables 

(2.3-6) 

(2.3-7) 

If one expresses the ambient pressure and density p and p , the yield 

Y and the variables Rand t all in the same system of units/the scaled 

variables are dimensionless. It is more convenient, however, to replace p 

and p by the ratios 15 = plpo and is = pip 0 relative to the sea level 

values, and to express Y as before in KT. With this choice, the strong 

shock relation between Rand t is the same as between R 

i. e. Eq. (2.3-3) with the same value of the constant k . 

* * and t 

The two methods of scaling differ in regard to what are considered 

similar situations. For the starred variables similarity implies that for example 

the hydrodynamic velocity and the temperature are unchanged; for the variables 

with the tilde the Mach number and the temperature ratio TIT 
- 0 

are unchanged. 

Either choice is acceptable, but ours has the advantage of using only one 

parameter to characterize the altitude. 
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From the time of shock formation until breakaway the thermal radiation 

comes partly from the shock precursor and partly from the shock front, and 

it is evident that the shock temperature is a major factor in determining the 

timing of the maxima and minima during this period. At a given altitude where 

one ha s a one-to-one relation between shock and precursor temperature 

(see Eq. 2.2-7 for the sea level case) it is fairly accurate to state that the 

shock formation maximum, the shock precursor minimum and the shock exposure 

maximum occur at fixed values of the shock temperature and therefore at 

fixed values of the scaled time. As one considers different altitudes the 

relation between Tp and Ts changes and one finds different values 

of the scaled times associated with these features of the power curve. 

After breaka way the radiation comes from points to the inside of the 

shock front whose locations depend on the optical properties of the air and in 

turn on th~ temperature and density distribution. This is a radiative transfer 

problem and hydrodynamic scaling, where times vary as the cube root of Y , 

is replaced by radiative scaling, where times vary approximately as the square 

root of Y (Glasstone, 1962, section 7.92) . 

Altitude scaling is a more difficult problem than yield scaling. We have 

already mentioned the effect of the changing relation between T sand Tp 

To this we must add that the relative importance of hydrodynamics and 

radiation transfer shifts with increasing altitude in favor of the latter. Thus 

shocks form more slowly and radiation is emitted more rapidly a s one goes to 

higher altitudes. As a result the features before breakaway are increa singly 

delayed and the maxima and minima tend to become weaker. The final 

radiative pulse on the other hand advances in time and becomes more prominent. 

At about 50 km the early features have become washed out and what was the 

final pulse is now the only pulse. 
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Chapter 3. SUMMARY 

As the reader of thi s report will have gathered any attempt at following 

the evolution of a fireball by numerical means utilizes a whole spectrum of 

facts and assumptions ranging all the way from being undisputable to being 

highly suspect. This is likely to leave him with a somewhat uncomfortable 

feeling about the reliability of such a calculation. In this summary we will 

put the finger on some of the underlying assumptions I point out what we 

know about their validity and evaluate how strongly our lack of basic 

information or of the willingness to spend computing dollars will influence 

the final product. 

3.1 Equation of state 

Nearly all calculations make the basic assumption that the air remains 

* throughout in a state of LTE. Once this is accepted it follows that the 

relation between the various state variables can be found by the methods 

of statistical mechanics. The application of these methods is very straight

** forward and the results as presented in (1) and (3) are probably correct to 

within a few percent. In some instances analytic fits which were made to 

feed these results into a computer have been poor but this problem can 

certainly be overcome and should not contribu te significantly to errors in 

hydrodynamics or other phases of the main calculation. Some problems may 

arise in the central region where one has debris rather than air and even 

more so in the transition region where one may have a debris air mixture. 

Fortunately many important results are rather insensitive to these details. 

* Local Thermodynamic Equilibrium (LTE) . 

** (1) stands for DASA-1917-1, etc. 
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3.2 Absorption coefficients 

This subject has been discus sed in detail in (2) and related facts 

are brought up in Chapter 1 of this volume. There are several ways of 

describing the absorption which differ in the amount of detail which is 

presented. The most detailed description consists of a listing of lines 

with intensities and line shape parameters on top of a continuum. All 

these factors are subject to errors as we shall briefly discuss. 

In the low temperature case where the lines are due to molecular 

systems the information comes largely from experimental spectroscopic 

studies. The limitations of our knowledge about frequencies and intensities 

is discussed in (2) Chapter 7. The information on line shapes is almost 

non-existent. To this one should add that one can hardly afford to include 

any but the strongest band systems. Even the rather minimal choice of 

eight band 'systems in the most recent version of the SACHA program brings 

the number of transitions to over 190 I 000. 

In the high temperature case the absorption comes from inverse 

Bremsstrahlung and from transitions in atoms and atomic ions. There is 

a strong continuum due to the first and due to photoionization. There is 

a fairly well developed theory and some experimental information backing 

it up. On top of the continuum is a large number of lines. A few levels 

have been observed experimentally but the majority I especially for the 

highly ionized atoms I have not been observed and must be obtained 

theoretically. . It is certainly neces sary to find the transition probabilities 

by quantum mechanical methods. These are so complex that one is forced 

to make radical approximations to get any answers and the results are not very 

reliable. 
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The calculation of the line contribution is the most elaborate part 

of the program and again one can hardly afford to include any but the 

strongest lines. This involves a somewhat arbitrary cut-off procedure 

whose practical effect can only be evaluated when one specifies how 

the absorption coefficient is to be used. 

The detailed description of absorption with fine spectral resolution 

greatly exceeds the requirements of radiative transfer calculations. As 

shown in (2) Chapter 2, it is unfortunately difficult to define averages which 

permit satisfactory calculations. Thus Planck and Rosseland means which 

and 
-1 

average ~~ ~~ respectively apply only in limiting situations; 

the one for very transparent, the other for very opaque media. Nevertheles s 

such means are useful and have been calculated. In the specific case of 

line effects, mentioned in the preceding paragraph, the contribution is 

not very large until one reaches temperatures like 2 x 10 5 OK and high 

densities. 

Because of the many uncertainties entering the calculation of 

absorption coefficients one has no systematic way of estimating their 

accuracy. The responsible authors of opacity calculations are generally 

confident that their results lie within a factor of three of the true values. 

In the intermediate temperature range where the opacity reaches a 

maximum ,the accuracy is probably somewhat better. Because of the large 

opacity the averaging procedures I which are appropriate for radiative 

transfer calculations, put the most weight on those parts of the spectrum 

where is small and very little weight on the lines. The Rosseland 

mean does and the Planck mean does not fall into this class. Because of 
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the emphasis on the continuum, where one has more reliable information, 

the Rosseland mean is expected to be more accurate. 

The extent to which opacity errors falsify fireball calculations 

depends on the temperature range. Inspecting the temperature profiles 

of Fig. 2- 2 which are typical for the early stage of a fireball one finds 

large temperatures near the center which makes the air in that region very 

transparent. Further out the temperature drops so that the opacity rises, 

goes through a maximum and then drops again. In the transparent central 

region radiative heat transfer is rapid and keeps that region at a fairly 

uniform temperature, as one sees in Fig. 2- 2. Just how uniform this 

profile is has very little effect on the rate of expansion and therefore 

opacity errors by a factor twice or even more are not serious in that region. 

The opaque zone around the central region acts as a radiative barrier 

and the development of the fireball does depend quite critically on the opacity 

there. During the very early phase where hydrodynamic motion is still 

negligible compared to the radiative expansion the section of the opacity

temperature relation near the maximum determines the rate of that expansion. 

It also determines when and where the hydrodynamic shock begins to form. 

When shock temperatures are still high, the opaque shell forms in 

a temperature toe ahead of the shock. This is the precursor which has been 

sketched in Fig. 2-7 and which causes the early structure in Fig. 2-1. 

At this stage the opacity is still of interest, since it determines the 

character of the escaping radiation and other observable phenomena, but 

the rate at which the fireball expands is given by the shock speed which 

does not depend on the opacity in the toe. 
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The next phase starts when the shock temperature has dropped low 

enough that the shocked air becomes opaque. This is aided by the high 

density directly behind the shock which can be seen for example, in the 

density profiles of Fig. 2 -3. Up to that time radiative transfer plays a 

major role in feeding energy to the expanding shock front. Now that 

source fades out and hydrodynamics takes over as the dominant mechanism 

for energy transfer. The details of the. change depend quite critically 

on the opacity relation. 

Upon further cooling the shock front becomes transparent again 

and the opaque shell recedes toward the center. This starts the long time 

interval during which the power vs. time curve of Fig. 2 -1 goes through its 

minimum, rises back to the final maximum I and starts to drop again. The 

calculation of this phase also depends quite critically on the opacity. A 

test calculation made with an opacity twice the accepted value stretched 

the total duration of this phase by almost a factor of two with a corresponding 

reduction of the maximum power level to about half of what it was in the 

earlier calculation. Thus, errors in the opacity relation could lead to fairly 

severe discrepancies between fireball models at the time of the second 

maximum. 

3.3 Radiation hydrodynamics codes 

The purely hydrodynamic part of any code is probably as accurate 

as the equation of state that is being used except for the smearing out of 

the shock front introduced by the artificial viscosity method. The accuracy 

of radiative transfer calculations is less certain, unless one is justified 

in using the diffusion approximation. In that case the limiting factor is 
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probably the accuracy of the opacity. Difficulties do arise I however I at 

the front of an opaque shell. Consider I for example I two zones labeled 

a and b whose temperatures place them on the rising branch of the 

opacity curve as indicated in Fig. 3- 10 As the heating wave progresses 

thepe points move up on the curve. The radiation escaping to the outside 

comes at first from zone a and passes without attenuation through zone 

b . As zone a climbs higher the radiation rises as T4 but when zone 

b becomes sufficiently opaque to take over the role of zone a the power 

output drops. This cycle is repeated when zone c and others after it 

climb into the position originally held by zone a. The result of this is 

a sequence of maxima and minima in the power versus time curve which 

has no physical reality. This spuriou s effect can be counteracted by using 

finer zone sizes but at the expense of increasing the running time which 

increases as the square of the number of subdivisions per zone. Actually 

this is not necessary I since test calculations show that the cruder zone 

divisions lead to the same average power and to the same rate of expansion 

as a very fine division. A related problem arises when the artificial 

viscosity routine introduces improper heating ahead of the shock front. 

Letting the pOint a in Fig. 3 -1 represent the shocked zone and band 

c the zones just ahead of the shock I this heating would make points b 

and c lie at too high temperatures. The calculated attenuation of the 

radiation from the shock is therefore larger than what it should really be 

and leads us to predict too low a brightness of the fireball. The reduced 

output has I however I practically no effect on the calculated motion of the 

fireball air because at that stage the amount of energy lost by radiation 

is still too small to influence the hydrodynamics. 
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Other errors may be introduced by the use of approximate integration 

routines such as the multiple ray or the two stream techniques which have 

been discussed in Chapter 1. Given a set of experimental data one can, 

within limits, adjust the opacity temperature relation so that either model 

will reproduce these data. It is therefore not really possible to disentangle 

errors which may arise from the use of these models on the one hand, and 

from incorrect absorption coefficients on the other hand. 

3.4 Deviations from LTE 

As we have repeatedly stated, nearly all calculations assume the air 

to be always in LTE. There are, however, some equilibration processes which 

are decidedly slow on the time scale of nuclear fireballs. At somewhat 

elevated altitudes one finds for example, that the proces ses responsible 

for populating the vibration ally excited levels of 02 and N2 fall into 

this class. These processes are discussed under the heading "vibrational 

relaxation" in (4) section 6.1 In the case of 02 ' populating the 

vibrational levels reduces the photon energy required for reaching the 

Schumann-Runge continuum below the 8.5 eV which it takes from the ground 

state. As long as these levels are not populated the actual absorption is 

therefore less than it would be in equilibrium. Similar considerations apply 

to the Birge-Hopfield transitions in NZ . In most codes these delays are 

just ignored. Hillendahl (see Appendix A) has attempted to account for them 

by means of a fairly crude model assumption. 

Other deviations from LTE are caused by the slowness of chemical 

reactions at temperatures I say I below 6000 0 K (see (4) sections 6.9 

and 7.5.) Among the molecules which can form in this temperature range is 
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N02 which ha s a large absorption coefficient. The delay in forming this 

molecule when air is suddenly heated by a shock and the subsequent delay 

in removing it again when the air cools down can change the absorption 

significantly from t he value at equilibrium conditions. If the temperature 

drop is rapid enough the N0
2 

concentration may stay for a long time at 

the high concentration corresponding to 3000 0 K even though the temperature 

o 
has dropped below 2000 K. In this situation one speaks of N02 as being 

frozen in. 

Non-equilibrium processes also occur at the debris air interface. It 

has been pointed out in (4) section 5.2 that this is very poorly understood. 

It is, in particular, quite uncertain what temperature the shocked air 

would reach and what X-ray spectrum would be emitted by that air. 

The questions raised in this chapter clearly do not exhaust the subject 

of possible errors in the present state of the art. It is, in fact, quite likely 

that effects with more practical significance have been overlooked. Still, 

this enumeration should provide the reader with some guidance what he 

should watch. 
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T 

FIG. 3-1 LOCATION OF 3 ADJACENT ZONES 
ON OPACITY CURVE 
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Appendix A. A Radiation-Hydrodynamics Code 

A . 1 Introduction 

In this appendix, a sample radiation-hydrodynamics code is 

presented which employs, with yarying degrees of sophistication, much 

of the physics and basic data presented elsewhere in this volume. 

In keeping with Chapter 2, this code describes the radiative and 

hydrodynamic properties of a sphere of hot air. Details of the weapon 

itself are not of interest in the present context, and rather crude 

generalizations have been used to represent the gross properties of the 

hardware. 

The code is presented as a means of demons trating some of the 

techniques of radiation-hydrodynamics, as described in Chapter I, the 

application of basic physical data, as described in Volume 2 , 

and as an Hlustration of the results discussed in Chapter 2. The code 

is not intended as a demonstration of the programming art and has not 

been polished-up for presentation here. A great deal of the program 

could be deleted were the program to be used only for present purposes. 

Much of the basic philosophy of this code has been presented in Chapter 1 

and by Hillendahl (1964), and will not be repeated in detail. 

The basic equations of the problem are the conservation equations 

of radiation-hydrodynamics for a one-dimensional spherical system 

which can be written in Lagrangian form as 

au = 
at 
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u = aR Defini tion of velocity (A.2) 
at 

v = 4 R2 a.R 
n am Conservation of mass (A.3) 

Q = ~[,2 on compression c V at 
Definition of Artificial (A.4) 
Viscosity 

Q = 0 otherwise 

Conservation of energy (A. 5) 

E = E(V, T) (A.6) 

p :: P(V, T) (A. 7) 

:1 is an integral functional of V and T (A. 8) 

where 

U = local fluid velocity 

t - time 

R = radius 

p = pressure 

Q := artificial viscosity 

m = mass 

c z an arbitrary constant near unity 

po· initial density 
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v = specific volume (reciprocal density) 

:1 = radiative net flux at R 

E = internal energy 

Quite generally, the mathematical formulation of the problem may be 

characterized as an initial value problem whose solution consists of a 

time-wise and mass-wise integration of a well defined set of hyperbolic 

partial differential and partial integro-differential equations. 

The solution of these equations is carried out by numerical techniqut~s 

in which values of the dependent variables are determined in terms of the 

two independent variables (the time and lagrangian zone mass) by means of 

finite difference equations which are used to represent Eqs. (A. 1) - (A. 8) • 

For purposes of numerical computation, the fireball configuration is 

represented by a series of conc?ntric, contiguous, spherical mas s shells. 

The mass of the k th zone is designated by mk (gm/ cm3). Since the mas s 

zones retain their identity throughout the time-wise development of the 

configuration, the zone index k and the time t (secon ds) are convenient 

choices for the independent variables. 

Integration of the set of 8 equations (Eqs. (A. 1) - (A. 8)} then deter-

mines the values of the 8 dependent variables as functions of k and t. 
-1 

U(k, t) (cm sec ) and R(k, t) (cm) are used to specify the ins tantaneou s 

values of the interface velocity and radius of the outer surface of the k th 

mass shell. :1(k,t) (ergs cm- 2 sec-i) is used to specify the instantaneous 

value of the net radiative flux at the ou ter boundary of the k th mas s zone. 

P(k,t) (dynes cm- 2), Q(k,t) (dynes cm- 2), V(k,t) (cm3 gm- 1), T(k,t) 

(oK), E(k, t) (ergs gm -1) are used to represent the instantaneous values of 
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the pressure I artificial viscous pressure, specific volume (reciprocal 

density), temperature and internal energy of the mass zone ffik • 

In a purely hydrodynamic problem without radiative transfer, it is 

the standard practice to reckon the thermodynamic properties of a zone 

(i.e.: pressure, internal energy, density, temperature) as constant 

average values over each zone. These values are also considered to 

be the central values of these variables at the geometri cal zone centers. 

Particle velocities are reckoned at the zone interfaces; the interface 

density and pressure gradient are formulated in terms of the values at 

the zone centers. The zoning mesh must be chosen fine enough so that 

the variation in properties from zone to zone is small enough to insure 

that these average values are meaningful. 

I n a problem which also includes radiative transfer, the above 

restrictions must also be met. Zone sizes in a problem including radiation 

will generally be smaller than the zone sizes required by hydrodynamics 

alone. The addition of radiative transfer to the problem will, in general, 

add further restrictions. 

If the temperature is taken as cons tant acros s each zone, temperature 

discontinuities will occur at the zone interfaces.' Radiative variables like 

T4 will have even greater discontinuities. More detailed examination 

indicates that the temperature and its spatial derivatives should be 

continuous at the zone interfaces. Thus, consistent with the expansion 

used in Eq. (2.5-9), the source function B is taken as linear between 

zone centers. Then the discontinuous spatial derivatives of the source 

function which occur at the zone centers do not appear in the formulation. 

In a more general formulation I a higher order polynomial could be used to 
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fit the source function through the zone centers, but numerical experience 

has indicated such a procedure resulted in only minor improvement in the 

computations. 

The central zone temperature T is used as the average over the 

zone for purposes of computing average zone pres sures, internal energies, 

and 'is used also in the Z, A, and W computations (Eqs. (2.5-13) 

through (2.5-15». This is done primarily for purposes of convenience, 

but can be at least partially justified. In regions of small temperature 

gradient, no problem occurs since the central and average zone tempera-

tures are nearly identical. In regions of large temperature gradients I the 

"average value" of the temperature is poorly defined in terms of the rapidly 

varying radiative variables, and it is preferable to keep the problem well 

pOised hydrodynamically. 

The specific volume V is taken as having a linear variation 
, 

acros s each zone. The values of V at the zone centers and zone 

interfaces are then uniquely defined and afford no further difficulty. 

The Z, A, and W functions are then computed using the average 

zone temperature T and specific volume V. Use of the average 

specific volume is justified since these functions show a relatively weak 

density dependence.- Neglecting the variations in temperature across 

the zone causes only relatively small errors in the high temperature inner 

fireball regions since these functions show only a weak dependence upon 

temperature. In the low temperature regions I the Z, A I and W 

functions vary about as the ninth power of the temperature. Even with 

extremely fine zoning I large temperature gradients occur across each 

zone, and the Z, A I and W functions would be ill defined in terms 
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of any average temperature no matter how the average be defined. Bu l 

the emission from these low temperature regions is small compared to 

the emission from the high temperature regions further inside, and these 

layers act primarily as a selective absorber for radiation from larger 

optical depth s • Hence the 
T 

Z function must be known with some 

accuracy I but small errors in the A function, originating because of 

the use of the average zone temperature I can be tolerated. 

The Z+ function I however I has peculiar properties in the low 

temperature region which allow its values to be obtained with sufficient 

accuracy. As discus sed in Chapter 8 I the spectral absorption coefficient 

varies extremely rapidly with wavelength so that the spectrum is effective. y 

divided at some wavelength into absorbed and transmitted fractions. This 

transition wavelength I however I depends only weakly on the zone tempera-

ture I and hence the average zone temperature will again suffice. 

It should always be born in mind that these numerical approximations 

all improve as the zone size is decreased and can, in principle be made 

accurate to any desired precision. In practice I however, the finenes s of 

the zone mesh is limited by the cost of computation. Skill is thus required 

to accomplish a large computational program within a limited budget. One 

tries to test each situation for sensitivity to zone sizes and achieve a 

compromise between economy of computation and accurate representation of 

the physics. 

For purposes of carrying out the integration procedure by numerical 

methods I the basic equations (Eqs. {A. 1) - (A. 8» are replaced by a set 

of centered finite difference equations as follows. The notation and 
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centering can best be seen by reference to Fig. A-I. 

n+l 
°k-l·/2 

= ( c ~ ~ n\ )(v~~i/2 -V~ _1/2)2 
n+l n 2 n+l n 

Vk - 1/ 2 + Vk - 1/2 4n R~+l t - t 

n+l = 
0k-1/2 0 if 

Ek- 1/ 2 - Ek - 1/2 + Pk- 1/2 + Pk - 1/2 + On+ 1/2 k-1/2 - Vk - 1/2 n-t 1 n ~ n+ 1 n ~n+ 1 n j 
tnT 1 _ tn 2 k -1/2 tnT 1 _ tn 

+ 1u.ifRn+1)2 9 n+ 1 _fRn+1\2 9 n+ l + IRn\2 9 n - fRn Y 9 n I = 0 
mk \ k k \ k - Y k - 1 \ k J k \ k - 1 J k - 1 
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(A. 12) 

(A. 13) 



n+ 1 ( . .n+ 1 n+ 1 ) 
Ek - 1/ 2 ~ E vk- 1/ 2 , Tk - 1/ 2 

:1 n+ 1 = 9. fvr:+ 1 Tr:+ ~ i = I, ••• •••••••• L 
k k~ 1 , 1 J 

Eq. (A.9) expresses the conservation of momentum and is centered 

over the grid point (n, k) • 

Eq. (A. 10) simply expres ses the definition of velocity and is 
, 

centered ov~r the grid point (n-ti-l/2 ,k). 

The conservation of mass, expressed by Eq. (A. 11), is centered 

over the grid point (nT 1/2 ,k -1/2, i. e. over Q~: ~;~ . 
The difference expression (Eq. (A. 12» for the artificial viscosity 

is centered on the grid location (n+ 1/2 ,k-l/2) except for the R~+ 1 

factor. The artificial viscosity is thus correctly centered for use in the 

energy Eq. (A. 13), but lags a half time step behind in the equation of 

motion (Eq. (A. 9). 

The energy equation (Eq. (A. 13» is centered over the grid location 

(n+1/2 ,k-1/2) and constitutes an implicit expression to determine the 

local temperature n+1 
Tk - 1/ 2 • 

Eqs. (A. 14) and (A. 15) are equations of condition rather than finite 

difference equations, and expres s the equations of s tate for the fluid at 

the location (n+ I, k-l/2) in terms of 
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Tk - 1/ 2 • 

(A. 1.4) 

(A • 15) 

(A. 16) 



Eq. (A. 16) , which is written above only in symbolic form, expresses 

that the local net flux .1~+ 1 i~i an instantaneous integral functional of the 

temperatures and densities of all of the L zones in the configuration. The 

set of Eqs. (A.9) - (A. 16) thus constitutes a set of 8L equations in 8L 

unknowns. 

The following set of 11 auxiliary equations are used to evaluate 

Eq. (A. 16): 

n+l {n+I n+I n+l n+J 
ZOk-1/2 = ZO\k~l/2' Tk- l / 2 , TRk- l / 2 , t / 

n+l 
ZIk - 1/ 2 

n+l 
AHk - l / 2 

= ZI(n+ 1 Tn+ 1 tn~ ~ 
k-l/2' k-l/2' / 

( 

n+l n-lrl n+~ 
= AH Vk - l / 2 ' Tk - l / 2 , t ) 

n+l (noTl \ 
Ak-l/2 = exp - 6.T k-l/1 
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(A. 20) 
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Sn+ 1/2 
k-1/2 

= 

W,1+ 1 = 
k-l/2 

9 n+ 1 
k 

n+ 1 n+ 1 
BCk- 1!2 - BCk+1!2 

n+ 1 n+ 1 
6T k_1/ 2 + 6T k+ 1/ 2 

n+ 1 n+ 1 n+ 1 
1 - Ak-l/2 - Ak-1/2 6T k - 1/ 2 

zepn+ 1 + Fln+ 1 [1 _~R~: i)2] ZIn+ 1 
k k R~l k 

k 

where (J = 5.67 x 10- 5 is the Stephan-Boltzmann constant, and TR is 

the temperature used to specify the spectral character of the radiation 

incident upon the zone from regions of smaller radius. 
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The analytic expressions for Eqs. (A. 18) and (A. 19) are not given 

explicitly in the written text, but are available in the FIRE BALL code 

listing which follows. 

In carrying out the numerical integration scheme, it is assumed 

that the initial values of R, T, V, E, P, U, Q, and :1 are known at 

the initial time tn for all values of k • The difference equations 

(Eqs. (A. 9) - (A. 28» are then used to determine values for these variables 

"1 at t n = t n + Li t for all values of k • The procedure is repeated as 

n is increased until the desired period of time has been covered by the 

integration. 

The initial values of Q and U are chosen at tn rather than 

t
n- 1/2 in the above procedure, but little error is introduced since the 

initial values may be adjusted accordingly and the time step I::, t may be 

chosen as very small on the initial cycle. 
, 

The actual input model consis ts of a set of R, U, T, and V 

values for each zone of the configuration. Initial values of Q, E, P, 

Q, and :1 are then found by use of Eqs. (A. 12), (A .14), (A. IS)' and 

(A. 16) before starting the first time cycle. 

The set of Eqs. (A.9) through (A. 12) depend only on the localized 

properties of the fluid and they can be advanced explicitly in space and 

time, subject to the limitations on the time increments according to the 

Courant criterion (see Chapter 2). 

The set of Eqs. (A. 13) through (A. 28) must be solved simultaneously 

for all of the L zones in the configuratiofl because of the linkage between 

distant zones caused by the rad,iative flux. Since the advanced values 
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n+l 
V k-1/2 of the specific volumes are known by advancing Eq. (A. 11) 

explicitly, a set of trial temperatures n+l 
T i _ 1/2' i = 1, ••• L are 

estimated, substituted into the Eqs. (A.13) - (A.28), and a Newton-

Raphson iteration scheme is then used to adjust the estimated values 

of temperature until Eq. (A. 13) is satisfied to a predetermined accuracy. 

The iteration is carried out by numerical methods. The equation 

of state derivatives, at fixed V, are carried out by raising and lowering 

the temperature 2% from its trial value, e.g.: 

= E(V, l.02T) - E(V, O.98T) 
l.02T - O.98T 

The derivatives of the radiative quantities are computed by a 

ripple zone technique in which the temperature of a single zone is raised 

2%, the set of Eqs. (A .17) - (A.28) is evaluated and the desired derivatives 

formed, and the displaced temperature is then returned to its undisplaced 

value. This procedure is repeated for each zone in the configuration until 

all the desired derivatives are available. In practice, radiative derivatives 

for zones more than 2 zones distant are small, so that only a 5 zone set (,f 

derivatives is carried. Neglect of the more distant derivatives does not 

constitute a neglect of radiative transfer between distant zones; their 

neglect only influences rate of convergence of the iteration procedure. 

For a system of L zones, the iteration procedure then results in L 

linear algebraic equations in L unknown temperature increments, each 

equation consisting of a set of terms involving 5 of the unknowns. This 

array is then solved by direct elimination and back substitution. The 

temperature increments are then used to adjust the trial values of 
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temperature until all tempera~re increments for all zones are simul

taneously less than 10% of their respective zone temperatures. 

The FIREBALL code is written in a programming language called 

FORTRAN; the particular v-intage is known as FORTRAN II, Version 2. 

The various types of FORTRAN currently in use differ from each other 

only in minor details. This particular version was selected primarily 

because it has been in use for a number of years, and has achieved a 

measure of stability and reliability not to be found in the more recent 

efforts of the computer industry. 

The FORTRAN language little resembles the machine language coding 

of a decade ago, and its resemblance to ordinary algebra is so close that 

the average physicist or engineer can learn to read FORTRAN with a very 

minimum of effort. This allows one to communicate the solution of a 

complicated theoretical calculation to his fellow scientists in complete 

detail and complete scientific honesty. 

Section A.2 is devoted to a brief discussion of how to read FORTRAN 

and is designed for the scientist who is not familiar with this type of 

language. The remainder of Appendix A is devoted to the scientific aspects 

of the FIREBALL code and is intended to be independent of the language details. 

Readers not interested in great detail may thus skip over Section A. 2, while 

those interested in such detail will find this section helpful in reading the 

code itself which is listed in full. The four digit numbers which appear in 

parenthesis throughout this appendix, e.g. (0136), refer to serial numbers 

(line numbers) in the code listing. 
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A.2 Reading FORTRAN 

Variables and Constants 

Algebraic variables are represented by symbols as in ordinary algebra 

-38 ~38 and may take on values from about ±. 1.7 x 10 to :!.. 1.7 x 10 , and 

zero. Arithmetic is accurate to 8 significant figures. 

Variable names must consist of 1 to 6 characters, the first of which 

must be a letter of the alphabet other than I, J, K, L, M, or N. 

Examples: YIELD, X, A47, FI, DIVFAR 

Integer Variables 

Integers are used in subscripts, counting, indices, and sometimes 

in exponents. They are represented by symbols of 1 to 6 characters and 

must begin with I, J, K, L, M, or N. 

Examples: N, J63, MCOUNT 

Subscripts 

Variables may have up to three subscripts, but no superscripts. The 

su bs cripts may be positive integers, bu t not zero. 

Examples: X(K-tl), Z{J,N), BB(I,J,K) 

Arithmetic Operations 

The symbols for standard arithmetic operations are little different 

from those used in ordinary algebra: 
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x + Y means add X and Y 

X - Y means subtract Y from X 

X * Y means multiply X by Y 

X 1 Y means divide X by Y 

Normal algebraic sign conventions are used. A double asterisk is used for 

exponentiation, i. e.: 

R ** 2 means R2 

R ** BETA means R~ 

Q ** 0.5 means 0
1/2 

Operations are carried out in the preferential order of first exponentiation, 

then multiplication and division , and finally addition and subtraction. 

Equal Siqn 

The equal sign has a meaning slightly different from algebraic usage, 

e. g.: 

XYIELD = XYIELD + (A ** 2) - B 

means carry out the algebraic operations to the right of the equal sign and 

store the result of this computation as the new value of XYIELD. Note 

that the previous value of XYIELD is first used, then destroyed and 

replaced. 
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Parenthesis 

Parenthesis may be used to group information, indicate subscripts, 

or indicate the argument of a function. 

Examples: 

(AT 8) *C means add A and 8, then multiply by C 

X(K+ 1) means K+ 1 is a subscript of the variable X 

SINF(X) means X is the argument of the sine function 

Usually parenthesis will be used for grouping; subscripts can be 

recognized because they are integers, i.e., I, J, K, etc.; functions 

can usually be recognized by the letter F and the lack of an arithmetic 

operation symbol. 

Library Functions 

Certain library functions may be called in by name in order to save 

programming labor. 

Examples: 

Program Flow 

EXPF(X) = 

SQRTF(Y) = 

LOGF(Z) = 

x e 

log Z 
e 

Statements are processed by the computer in order of occurrence 

unless other directions are provided. Formula numbers, which occur in 

the first 5 spaces to the left, are not required unless control is to be 
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switched to that particular formula. The most common control commands (lre~ 

GO TO 436 

IF(X(K) - 3.0) 450, 500, 750 

sends control to statement 436 

tells the computer to test 

the sign of the expression 

in parenthesis (X-3) and to 

transfer control to statement 

450 if negative, 500 if zero, 

750 if positive. 

The IF statement provides the only means by which the computer 

makes judgments. 

Subroutines 

Complete subprograms, designed to-accomplish a particular set of 

computations many times, can be used. For example~ 

CALL STATE 

appearing in a program will send the computer to subroutine STATE, the 

set of computations indicated in that subroutine will be carried out, and 

control will return to -the main program at the statement following CALL 

STATE. 

Repetitive Operations 

To save labor in programming, the DO statement may be used: 

DO 100 K= I, 9 5 
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instructs the computer to carry Out all instructions following this statement 

until statement 100 is reached. Do this first with K equal to 1 ; repC'at 

this process, increasing K by unity each time, making the final pass wi th 

K equal to 95. 

This statement can be used to compute repeti tive formulae I or it 

can be used to select values from an array of numbers. For example~ 

10 

50 

70 

TESTV = 1. 6 E+O 2 

DO 5 a K= I, 100 

2 
means set TESTV = 1.6 x 10 

I F( x( K) - TESTV) 

XCRI T = X( K) 

50 I 50 I 10 

N = K 

GO TO 70 

CONTINUE 

XCRI T = 0.0 

YSTART = XCRI T + DELTAY 

sets XCRI T equ al to X( K) 

retain the value of K as the symbol N 

exit from the DO statement 

a dummy statement 

set XCRI T to zero 

the next step in the computation 

selects the firs t X value that is greater than 160 out of a list of 100 

values of X, starting at X( 1) I •••••• x(lOO). If no such value is found I 

then XCRI T is set equal to zero. 

The above material has been brief and oversimplified I but should 

enable those unfamiliar with FORTRAN to decipher formulae from a program 

listing and to follow the scheme of computation. Additional help can 

usually be obtained from programmers if additional questions of interpre

tation should arise. Books on FORTRAN are available I but none are 

recommended. 
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A.3 The computational scheme 

The general computational scheme is cyclic in nature, each completed 

cycle representing an advance in the time variable. 

The method of computation is illustrated in the schematic flow chart, 

Fig. A-2. Each block in this illustration represents a principal feature 

of the computation; numbers in the upper left corner of each block refer 

to a line number to the far-right of each page in the code listing. 

The computation begins by reading in an initial configuration from 

data cards. The configuration consists essentially of the initial density, 

temperature, velocity, and dimensions of each of the 100 zones in the 

model. The data cards may represent an initial configuration I or the data 

might represent the results of a previous computer run on a mOdel that is 

being done in short segments. 

If the entry is a restart rather than an initial start, a dummy subrc.utine 

rejust (0693)' is provided to make minor changes in program control 

parameters without the need for recompiling the major subroutines. 

After reading in the initial configuration, the data is tested for 

obvious errors (0367), the equation of state subroutine (038"7) I the radiati,,'e 

properties subroutine (0389) I and finally the flux subroutine (0410) are 

used to complete the details of the initial configuration. The computation 

cycle proper is then initiated (0402-0405). The initial time, which has been 

modified (0404) I is now restored to its proper value (0123). 

A sequence is then used to determine the number of zones, out of 

the possible 100 I that are to be used at the present stage of the computation. 

(0124-0138). The number of zones in use is continuously adjusted during 

the computation to avoid unneces sary computation. When the data is loaded, 
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zone 100 must have the ambient temperature and density cn burst ultitud8. 

The code then probes inward to a point where the temperature is tw.ic:,-~ 

the ambient value or the particle velocity reaches 1 m per second. The 

number of zones in use is then arrived at by adding a 6 zone safety factol 

to the result of the above selection. 

The next sequence (0139-0162) selects the times at which the datu 

print-out routine (0833) is called. selects the magnetic tapes to be used 

for the data. and sets up the necessary parameters to integrate the tOlal 

energy lost by radiation between two data printouts. and to find the radiant

power by differentiation of the energy vs time. The data print-out routine 

will be described in detail in Section A. 4. The data printout routines 

are one-way streets so far as the main stream of the computation is 

concerned. Data is siphoned ofL but no feed back into the computation 

proper occurs. 

The sequence (0164-0177) provides an emergency data saving 

mechanism for use in case the computation becomes numerically unstable. 

In order to provide an economical computation. the time step used must 

be just below the critical valuE.; prescribed by the various criteria which 

will be described in the hydrodynamic routine (0360) ~ These criteria are 

not fool"'-proof. and should the computation become numerically un stable 

(or should the compu ter operator err). the already completed compu toti Oil 

might be lost unless there were a mechanism for restarting. Once the 

calculation has become unstable. the data presently in the compu ter may 

be invalid. The present sequence writes the fireball configuration on a 

magnetic tape at the completion of each 50 code cycles. Each time another 

50 cycles are completed. the tape is rewound and the next configur3.tion 
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written. Finally, at the end of the run, the last configuration remains 

on the tape, is read into the computer (0305), and data cards are punched 

(0312). Should this data card punching process fail, the tape itself is 

saved and the cards can then be punched directly. At the time of terminati,m 

due to any type of error, data cards are then available not more than 50 

cycles back. On occasion, an instability may occur just after a configuration 

has been written in the tape, in which case the computation is lost. But 

this has a probability of occurrence of about 1 chance in 50. 

The next two sequences (0179-0257) select the rezoning subroutine 

(0179) and the zone splitting subroutine (0225). These sequences will be 

discussed below in Section A.5 dealing with these subroutines. In 

principle, one tries to remove fine zoning where it is not needed, and to 

create fine zoning when the physics of the problem so demands. Use of 

fine zoning throughout is not feasible because of the increased computational 

costs and also because the computer can only accommodate a total of 100 

zones at one time. If the finest zoning in the problem were used through Jut, 

the entire fireball could not be accommodated. So far as is known, other 

codes (Brode and Whittaker, private communications, 1965) currently 

in use are rezoned manually by visual inspection. The present sequences 

are an attempt to carry out this process automatically during the computation. 

The sequence (0259-0264) provides for the printing of detailed 

diagnostics at the initial cycle, the next cycle following, and at one 

selected by data card input. The diagnostic routine (1125) is called for 

this purpose. 
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A termination sequence is provided (0266-0342) which is used whenever 

the computation is terminated I except in those cases where the normal 

course of the computation is interupted by a machine difficulty or an 

operator error. The termination sequence provides for a final data printout 

(0274) I the printing of program diagnostics (0273) I the punching of current 

data cards (0275-0282) for possible restart purposes I completes I copies I 

combines I and unloads various tapes (0283-0326) I and punches data 

cards containing the configuratl"ons from 1 to 50 cycles prior to the 

termination (0303-0319) I before completing the run (0343). 

The series (0123) through (0345) has dealt primarily with control 

mechanisms I rather than the actual computation I which is resumed at (0346). 

In the course of the computation it is necessary to carry most of the program 

variables for all mass zones I but only for the current pOint in time. A few 

of the variables must be carried for all space zones I but for two consecutive 

pOints in time. For example I the present value of the specific volume for 

zone K is represented by the symbol V(K) I while the specific volume fromJne 

time- step in arrears I the retarded value I is represented by VR(K). As the; 

program cycles I the present value becomes the new retarded value I and a 

new "present" value is computed. 

The shifting process I in which the retarded values are set equal to 

the present values I takes place in the next sequence of commands (0346-0356). 

Also in this sequence I the present values of the variables are independeni.1y 

saved under the symbol W(K,I) for possible use in the event that the entire 

cycle requires restarting. The restarting procedure is discus sed at the end 

of this section. 
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Following retardation of the variables, a hydrodynamics routine 

(0360) 1s called, which will be des cribed in detail in Section A. 6. Thi s 

routine advances the velocities I radii, specific volumes I and artificial 

viscosities. 

One of the more important steps in the program is accomplished by 

a single dummy statement (0364). The first step in solution of the energy 

equation (Eq. (A .13», is the estimation of a new trial temperature for 

each zone. Skillful selection of the trial values will make the iteration 

process converge faster and thus speed up the computation. However, in 

an iteration process the equation being solved is never satisfied identical:y I 

and any prejudice used in estimating the new temperatures may tend to 

impose non-random errors in the final results. For this reason, the old 

values of temperature are used as the first estimates for the new values. 

The iteration scheme itself then, in a sense, becomes a basic part of the 

system of equations. As will be discussed later, the iteration scheme used 

employs the same set of equations as are used to represent the energy 

equation itself. This procedure should tend to minimize any bias. 

The iteration cycle proper (0365) begins by testing the set of 

temperatures for negative or zero values. Such values are likely to occnr 

in the event of a numerical instability I in which case the computation is 

immediately terminated through" the sequence previously described. 

In the next sequence (0371-0387) the equation of state subroutine (1217) 

is called on three successive Qccasions. This subroutine is discussed in 

Section A. 7. At this pOint in the computation, the advanced values of 

the specific volume are known for each zone. A trial set of temperatures 

has been selected. The derivatives of the internal energy and pressure, 
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with respect to temperature, at constant specific volume, are formed by 

first increasing the temperatures 2% above the trial values, passing through 

the equation of state to obtain energies and pressures, then repeating the process 

after lowering the temperatures 2% below the trial values. The required 

derivatives are then formed numerically from the above data (0384-0385). 

The temperatures are then returned to the original trial values and a 

final pass through the equation of state is made to obtain trial values of 

the internal energy and pressure (0387). 

Two subroutines are then ':called to provide the neces sary radiative 

flux divergences for use in the energy equation. Subroutine SWABZ (0490) 

uses the values of V, T, and the dimensions of the zones to compute 

values of the SWAB and Z functions and is discussed in Section A.8. These 

values are used in subroutine FLUXS (1183) to compute fluxes and flux 

divergences as described in Section A. 9. 

A temperature test occurs next in the computation, but is bypassed 

on the initial trial of the energy equation. 

The energy equation itself is then evaluated (0415-0424). A residue, 

comprising the imbalance of the energy equation due to the use of trial 

temperatures, is computed for each zone (0422). 

The temperature iteration of the energy equation then commences ' 

(0425). Two types of iteration schemes can be selected. If the configuration 

is entirely optically thin (i. e. the total optical depth from the outer edge 

to the center is less than a given value) a non-radiative iteration (0429) 

can be used. Radiative transport is still included in the energy balance, 

but explicit radiative derivatives do not appear in the iteration scheme. If 

this alternative is selected, the temperature increments for each zone are 
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computed immediately (0431). 

When radiation is included in the iteration (0439), the radiative and 

hydrodynamic derivatives are ccrried only in the inner zones, while only 

hydrodynamic deriVatives are carried in the outer zones. 

In the radiative iteration procedure, subroutine COEFF (1395) is 

called to form the required coefficients for the solution (0447) for the 

temperature increments. This subroutine is described in Section A. 10. 

Once the full s·et of proposed temperature increments is known, they 

are tested (0457) to see if they are within arbitrary bounds which have 

been developed by e1tperience. Should these bounds be exceeded, there 

is a high probability that the time increment used by the computer was too 

large. Program diagnostics are then printed, the variables are restored 

to their vall1es at the beginning of the cycle, and the cycle is repeated 

using a smaller time increment. This recycling is allowed 3 times, after 
\ 

which the computation proceeds even though the test bounds were violated. 

If the test criteria were correct, a numerical instability results, and the 

computation is terminated from ·:me of the several pOints in the program 

where the instability can be positively detected. An instability does 

not always occur, however I since the tests are not infallible. 

Usually a recycling occurs when a time increment just slightly too 

large has been used and a single recycle cures the difficulty. Use of this 

stability check "after the fact" enables the various time step selection 

criteria to be pu shed close to their limits. Use of large safety factors 

in these criteria, as is the common practice, would be prohibitive as 

the total computation time woul? be seriously increased. If the proposed 

temperature increments satisfy the stability tests, they are accepted and 
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the trial temperatures are modified accordingly (0485). 

These new temperatures become a new set of trial temperatures 

and the iteration cycle is begun again (0367). The iteration convergence 

test (0409) is made well 1nto the second and subsequent passes through 

the iteration sequence. Should the test be satisfied, then the best values 

of internal energy, pressure, ~d fluxes, etc., are available as the cycle 

is completed. If the test is failed, the iteration cycle then progresses with 

all the necessary data. The code as written performs some unnecessary 

computations in that the state derivatives are computed but not used if 

the convergence test is satisfied. This technique was a compromise 

between several alternatives and was adopted because it required less 

computer storage at a period when the program was storage limited. 

The actual convergence test used (0408) consisted of the requirement 

that the temperature increments for all zones be simultaneously less than 

10% of their respective zone temperatures. This method proved to be 

more effkient than several other methods tried which were based directly 

on the degree of imbalance of the energy equation. 

The number of passes through the iteration sequence is limited to 

3 on anyone code cycle (0416). It is a characteristic of the Newton method 

that convergence takes place very rapidly or not at all, and that on odd 

number of attempts is usually better than an even number. Should an 

abnormally large temperature increment occur after 3 iterations, a 

convergence check at the beginning of subroutine HYDRO detects this 

and forces a smaller time step on the following cycle. This test differs 

from the main program stability check in that it is applied only after 

3 full iterations and uses stricter criteria. 
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A.4 Data printout routines 

The data printout sequence is contained in subroutine CGSPO (0833), 

This routine samples the data from the computation proper, generates 

additional parameters of interest from this information, and produces tW(· 

magnetic tapes: the main listing and the user tape. 

The general problem of determining observables from a list of 

temperature and density values is a difficult one. Many of the "observable" 

parameters generated by the printout routine are extremely crude and must 

be used with extreme caution. These "observables" have been printed 

below the main tables of data and include the shock radius, fireball 

radius I effective temperature, color temperature, and the spectral 

distributions. For example, the code defines the fireball radius (FBR) 

as the radius at which the optical depth is 0.44 as measured from outside 

the fireball. This simple definition is easy to code and is useful radius 

to have printed out. att for comparison with an experimental radius 

measured photographically, a complete brightness profile is required for 

comparison with the corresponding densitometer traces from the experiment. 

The routine begins by testing for temperature inversions (0864) and 

causes program diagnostics to be printed 1£ such inversions are found. 

Placement of this test in the printout routine causes the diagnostics to 

coincide in time with the data printout so that any unusual features seen in the 

listings may be studied in detail. 

In the sequence (0868-0874) a number of variables to be printed out 

are set up. This sequence works in conjunction with the sequence (0139-

0162) in the main proqram. The variable CN(LZ) is the average time step 

between two succeillive printouts. The variable SAVEl is the value of 

the last time step before the printout. The total power being radiated 
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in watts (POWER), the color temperature (TGOL), and the effective 

temperature (TEFF) all depend upon the value of the total flux (TFLUX) 

which is the power being radiated in ergs. TFLUX is computed in the 

main program (0155). The instantaneous total flux at the end of each 

cycle is called FLOX and is summed continuously (0139) throughout the 

computation and called FLEX. The average power TFLUX over the time 

interval between printouts is obtained by numerical differentiation of 

FLEX (0155). This method gives more representative results for the 

power output since the instantaneous power tends to fluctuate due to the 

finite zoning of the model. The instantaneous total power corresponding 

to the time of a given printout can easily be obtained since the radius 

and outward flux at the last zone are available from the printout. 

The code definition of the effective temperature (TEFF) is defined 

(0874) from 

TFL UX = 4TT (F BR) 2 a (T EFr) 4 

where a = -5 5.67 x 10 = Stephan's Constant. 

It is the temperature of a" black body radiation having the same size 

as the fireball and which emits the same total power". This temperature 

is a minimum estimate of the fireball "surface" temperature sin ce the 

fireball does not have an emissivity of unity. 

The code definition of (0873) color temperature (TGOL) uses an 

estimate of the total emissivity and yields a higher temperature which 

can be used to describe the sp~ctral character of the radiation escaping 

+ from the fireball. The emissivity estimate is based on the Z function 
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for the zone having the largest ')., and the radiation temperature for 
c 

that same zone (0689). 

After the fireball becomes transparent in the continuum, the effective 

and color temperatures are no longer defined since their definitions 

involve the fireball radius, and by the code's definition, FBR=O under 

these circumstances. 

At this pOint (0875), the printout routine calls subroutine PHOTOG 

(1061). This routine computes an estimate of the photographic brightness 

as a function of radius. Using an approximate fit (1073) to the absorption 

coefficient for the "photographic II region of the spectrum, and a Planck 

function (1083), the emitted intensity is calculated for chord rays which 

are tangent to the mid-point of each mass zone. Since the spectral band 

width of the, photographic region is unspecified, only relative brightness 

values are obtained. The brightness scale, however, remains fixed 

throughout the entire computation. It is clear that only an estimate can 

be obtained from this comput8'tj,on since the absorption coefficient is not 

independent of wavelength across the photographic region of the spectrum, 

and also because the appropriate absorption coefficient data are not 

available at temperatures above 20 eV. The data is useful, however, in 

making comparisons Wi th exper!mental results and in finding the gross 

brightness variations across the fireball. 
, 

The CGSPO routine next makes an estimate of the spectral distribution 

of the total radiation emitted by the fireball. The code decides (0877) 

whether the fireball is optically thick or is transparent. If the fireball 

is transparent (0878), no realistic estimate of the spectral distribution 

can be made since the spectrum consists of emission lines and a weak 
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continuum. An extremely crude estimate of the "visible power" 

(4000-7000 A) can be made by noting that fireballs tend to form an 

isothermal region at these late times. Most of the emi tted radiation 

must come from this isothermal region since it is the hottest part of 

the fireball. These isothermal region temperatures range from 9500 0 K 

down to 5000
0

K as the transparent fireball cools. If it is assumed that 

the envelope of the emitted spectrum crudely approximates a Planckian 

distribution, then 37 -t 3% of tha radiation will fall in the "visible" region 

of the spectrum over this entire range of temperatures. Hence, for the 

transparent case, the visible power (P47) is taken as 37% of the total 

power (0878). 

If the fireball is optically thick (0888), then the color temperature is 

used as a basis for division of the total power into broad spectral bands .. 
(0889-0939). The formula for the Z function, which very nearly approximates 

the fractional Planck function in the visible and IR spectrum, was used in 
<Xl 

place of an accurate fit to J ~ d). as an analytic fit to this integral was 

not know to be readily av~ilable. The accuracy so achieved· i s probably 

better than the physics of the spectral estimation proces s. The overall 

results are of a quality comparable to those achieved by assuming the 

sun to be a 6000 0 K black body. 

The next sequence (0944-0963) performs an energy check by summing 

the internal and kinetic energy of the current configuration. The sequence 

computes the internal energy and the kinetic energy zone by zone, and 

also the internal energy of the volume of space currently occupied by the 

configuration if there had been no detonation. This "ambient" energy of 

112 



the undisturbed air constitutes a significant part of the total energy of 

the configuration, particularly at late times when the radius of the 

configuration is large. It must be taken into account in studying the 

energetics of the model. 

The code has no built-in method of forcing energy conservation. 

The energy check sequence is simply an after-the-fact sampling to see 

if energy has been conserved. If the difference equations do in fact 

represent the basic conservation equations, then mass, energy, and 

momentum will automatically be conserved. 

The energy accounting at anyone moment can be verified by adding 

the present model energy due to the detonation and the thermal losses up to 

the given moment. The quantities TOT ES, EAMB and TYIELD are printed 

out and are the appropriate numbers to use for this purpose. TOT ES in 

the printou t i~ the total energy, (DPP(LZ) in the code (0959)) and includes 

EAMB, the energy content of the cold air before the detonation. TYIELD 

in the printout, ~LEX in the code (0139)) is the total energy radiated 

outward across the outer boundary of the model from the time of 

detonation up to the present time. In general, the code conserves energy 

to within a fraction of 1%. 

Sandwiched in the energy check routine are some operations which 

concern the printing out of shock parameters. (0955-0958). It should be 

remarked that the location of shock fronts in a numerical configuration is 

a difficult problem because of the varying number of shocks and the wide 

range in their characteristics. Many methods were tried, but with limited 

succes s. Shocks are best located by a careful study of density vs. radiu s 
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and velocity vs. radius graphs, 

The location of a strong shock is determined by the program by 

finding the largest value of the artificial viscous pressure, with the 

added requirement that it be larger than the ambient gas pressure at 

burst altitude. This shock radius is printed, but cannot be relied upon 

without further inspection to see if a shock really exists at that radius. 

This simple technique will print out the location of one shock, but it 

may not select the same shock. on consecutive printouts. 

The sequence (0978-0991) 'imply changes units and sets up certain 

quantities in proper form for priMing them out. For example, (0987) 

computes the effective value of "gamma, " while (0984) yields the 

temperature in electron volts. 

The sequence (1001-1016) prints out the main listing, while the 

sequence (1022-1029) prints out the user magnetic tape for use in 

continuation computations such as fireball environmental studies. 

A.5 Variation of the number of zones in use 

It has been said that there are three major problems to be solved in 

writing a fireball code: the basic physics, the interpretation of the 

results, and the use of proper zoning. Proper zoning is by far the most 

difficult of these problems. One simply cannot use a fine mesh throughout 

the configuration as the computing time increases approximately as the 

square of the number of zones, i.e. halving a zone halves the time step 

and doubles the number of computer operations I thereby requiring four 

times as much computer time. 
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In the other extreme, if the model is represented by zones of equal 

size, some of the zones may be too large to properly represent the 

gradients in phys ical properties". 

Consider, for example, a model where the fireball has a radius of 

103 cm and may require zones of width 10- 1 cm at the fireball boundary. 

Since the computer can. accommodate only about 100 zones at a time, the 

-1 zone obviously cannot be of equal size. Furthermore, use of a 10 cm 

zone in the hot isothermal region would slow the computation by at least 

a factor of a hundred, and perhaps a factor of ten thousand or more. 

Ideally, new zones should be created and old zones combined in an 

optimum manner based on the local physical conditions at each pOint in 

the" configuration. The subroutines SPLIT (0785 ) and REZONE (070 1) 

are provided for these purposes. 

In the split subroutine, the zone indices for the zones exterior to the 

zone to be split are first shifted outward (0789-0808) to make room for 

the new zone. 

The zone is then split in half mass-wise (0810-0811). The particle 

velocity at the new interface is taken as the square root of the average of 

the squares of the particles velocity at the boundaries of the original zone. 

The temperature of the two new zones are displaced 10% above and below 

the temperature of the original zone, (0824-0825) and a similar treatment 

is accorded the internal energies (0826-0827). 

This routine must be considered as only a crude beginning and much 

work is still being done in developing new techniques. The present 

routine can only be used before the gradients become large, and even then 

its use should be discouraged. 
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The calling sequlnce f« the SPLIT subroutine occurs in the main 

program (0225-0257). Statements (0228 and 0248) prevent a split more 

often than each third eycle. Statement (0231) requires a split at any time 

that a single zone represents more than 8% of the radius of the entire 

conU9\lration. 

The real purpose of zone splitting is to provide very fine zones just 

ahead of an advancing shock front so that the optical properties will not be 

too severely distorted. The sequence (0232-0244) attempts to achieve 

this goal. Optical depth 0.7 from the outside is located (0232) and this zone 

is tested to see if it is being compres sed (0 23 5). Then if the particle 

velocity is greater than 105 cm/sec as is characteristic of optically thick 

shocks, the five zones immediately exterior are scanned and one per cycl8 

can be split, until a certain minimum zone size is reached. Once the 

shock. has started I the splitting takes place 5 zones ahead of the shock 

until til. shock becomes transparent. The minimum zone size has not yet 

been formulated in general terms I and must be re-programmed in for eaC1 

separate run. In the program listing (0240) a zone of 200 cm or more can 

be split, resulting in a minimum zone size of 100 cm. This is about 

appropriate for a megaton burst at sea level. 

As a final insurance against undesirable zone splitting at high altitudes I 

statement (0244) prevents splitting at temperatures above 6 x 10
4 

oK. 

Subroutine REZONE (0701) I which combines two existing zones is on 

a much more sound basis. Conservation of mas s in the zone combining 

process is trivial (0735) I but the conservation of energy and momentum are 

slightly more complicated. The internal energy of the new zone is taken 
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as a mass weighted average of ti1e internal energies of the two zones being 

combined (0733). The conservatism of kinetic energy and momentum for a 

four zone system (0709-0712), which is collapsed into a 3 zone system, 

results in two equations for the two unknown particle velocities at the 

inner and outer edges of the combined zone. 

The remainder of the subroutine REZONE consists of a shifting of 

indices for zones exterior to the fusion, and the addition of a new zone 

100 at the outer edge of the configuration. 

While this routine works well and quite accurately. some skill is 

required (but not always attained) in deciding when rezoning should take 

place. 

The calling sequence for rezoning is in the main program (0179-0224). 

On the basis of optical properties (0182), the outer limit of the region to 

be seaMed (the index NZ TS) and an allowable mass ratio for neighboring 

zones (PMT) are selected (0181-0202). If at least two cycles have passed 

since the la.st rezone (0204), zones 9 through NZTS are tested for size 

compared to the size of the entire configuration (0205). temperature 

gradient (0206), density gradient (0207), and mass gradient (0208). If 

these gradients are less than the allowable artitrary limits. then rezoning 

is allowed so long as the zone is not undergoing significant compression 

(0209) • 

A.6 Hydrodynamics routine 

The hydrodynamics routine (1261) is patterned after the artificial 

viscosity method of treating shocks (see Chapter 2~). In addition to 

advanaing four of the basic equations, this routine also controls the size 

of the time increments and performs miscellaneous other functions. 
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At the beginning of the routine I the previous temperature increment 

is tested (1273) against the temperature, and if the increment is too large, 

the proposed time step is cut a factor of five (1277). This test serves 

several purposes depending upon the values of the previous temperature 

increment that may be stored in the computer at the moment. If a mainc'ycle 

has been completed' satisfactorily, 1. e. all temperature increments are les s 

than 10% of their respective temperatures, then no decrease in estimated 

time step takes place. If, however, a main cycle was completed after 

three passes of the energy equation, the 10% requirement may not have been 

satisfied, 1. e., the iteration may not have converged. Should this be the 

case, then the time step is shortened in the hope that a numerical 

instability can be avoided. 

If the main program stability check (0457) is violated, the program 

returns to the beginning of that master cycle after restoring all data 

except the temperature increments. Then, since the HYDRO tests are 

slightly more demanding than are the main program tests, the time step 

will also be decreased when the main program senses a difficulty. 

The equation of motion sequence is carried out in two separate 

phases which are separated by criteria to choose a 'new time increment. 

The particle velocities are first advanced using the previous value of 

the time step (1289) so that proper time centering of the difference 

equation (Eq. A .9» is maintained. 

A new time increment is then selected (1298-1335). First a time 

step 30% larger is suggested (1299). This value is then reduced should 

the Courant criterion, Eq. (2.5-4), demand that a smaller value be used 
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(1302-1310). The time may be further reduced by a radiative criterion 

(1314-13 26). Gross checks are then imposed, as a safety factor, which 

demand that the new time step can never exceed the previous one by more 

than a factor of two, or be less than a given minimum value (DTMIN). 

The value of DTMIN is continually increased during the computation and 

is kept a factor of 50 smaller than the largest time step that has been u~ ed. 

Should the speed of computation decrease more than this factor of 50, too 

large a time step (the value of DTMIN) is forced into use and the computation 

may become unstable and turn itself off. This feature prevents the waste 

of computer time should the time step conditions become abnormally 

critical at some pOint in the configuration. 

Superimposed on these criteria is the mechanism for causing data 

to be printed out exactly at fixed predetermined times (1333-1335). This 

criterion may further decrease the time step. 

After a new time step has been decided upon, new values of the 

particle velocity are determined by linear interpolation (or extrapolation) 

so that proper time centering of the equation of motion is maintained (1337). 

The radii (1344) and specific volumes (1362) are then advanced in a 

straightforward manner. The new radii are tested before adoption (1348) 

to prevent sudden zone collapse should the estimated hydrodynamic time 

step be too large. A local recycle with decreased time step is then 

instituted (1358). 

It is perhaps appropriate to again mention that the use of large 

safety factors in the time step criteria result in the use of large amounts 

of computer time. Considerable economy is achieved by lowering the 

safety factors, testing the proposed results before closing a cycle I 
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and re-cycling when necessary. Using this technique and with a little 

experience I the code can be kept running at near optimum speed. 

The sequence (1372-1385) advances the artificial viscous pressurE. 

A variety of formulae are available in the literature for this purpose. The 

formulae used here is similar to that given by Richtmyer (see Chapter 8 

references). This form appears to give better results when shocks reflect 

at the center of the sphere than do the "linear" and "quadratic" forms. In 

the final analysis I the use of an artificial viscosity is an art and an 

adjustable constant (1374) is available to achieve optimum results for 

any specific situation. Use of too small a constant causes numerical ripples 

behind the shock I while use of too large a value spreads the shock-over too 

large a distance and lowers the shock velocity. According to Richtmyer I 

choice of the arbitrary constant in a manner so as to spread the shock 

discontinuity over 3-4 zones results in shock velocities and pressures 

that agree well with laboratory experiments. 

The use of an artificial viscosity causes a ficticious precursor ahead 

of the shock front. If this precursor is optically thick I the shock radiation 

rate will be affected. This effect reduces the rate of radiation los s when 

the shock temperature is large I but numerical tes tirig has shown that it 

has little effect on the shock energetics. 

A.7 Equation of state routine 

The equation of state subroutine (1217) is entered with known values 

of the temperatures and specific volumes for each zone I and values of 

pressure and interval energy are computed. 
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The source data for the analytic fit to equation of state are 

primarily due to Gilmore (1955) and to Hilsenrath and Beckett (1955). This 

polynomial type of fit, though in principle not as accurate as an iterative 

routine, is preferred for computational purposes because the derivatives 

are well behaved. This fit is also self consistent in that the hugoniots 

are closely satisfied, while some of the piece-wise fits, that are accurate 

over limited ranges, fail in this regard. No significant inaccuracies 

are known to have resulted from use of this simple expression. 

There is some question as to whether radiation pressure and the 

radiation energy density should be included in the equations of state 

(see Chapter 2). The subroutine STATE allows an explicit choice to be 

made in this regard (1222-3). These effects can only be important at high 

temperatures. The argument against including these effects is that at the 

high temperatures the matter and the radiation cannot be in equilibrium 

according to the local high temperature since the g as is too tran sparent. 

The radiation field is characteristic of the lower temperatures where the 

opacity is higher. To base the radiation pressure on the higher values 

of temperatures in the interior would thus be an overestimate. 

A .8 Radiative properties routine 

The radiative properties of the fluid, which are characterized 

bytheS, W, A, andZfunctions , Eqs. (A.17) through (A.2S)' are supplied 

by subroutine SWABZ (0492-0692). The analytic representations of the Z

and A functions I which differ only in that the electron scattering is omitted 

in the A function, are formulated in terms of AH I a radiative mean free path 

which depends upon the zone temperature, zone specific volume, and the 

time. 
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The Z function (ZI in the code) is formulated directly as a 

* transmission (0500-0507). The A function cannot be formulated directly 

in this fashion since In A is needed to define optical distance, and 

truncation errors would occur as A ..... 1.0. Thus AH' (HMFP in the code, 

is found (0508-0511), together with a separate high temperature emission 

term (0512) due to Bremsstrahlung (HMFF in the code). The smaller of 

these two mean free paths is used for temperatures above 10 eV (0514). 

The emission optical depth (0516) then follows immediately from the 

zone thickness. The A function (0517) at this point in the code is identical 

wi th the definitions used in Eqs. (A. 21) and (2 .5-14). A later sequence 

(0670-0675) redefines A as (I-A) (an emissivity) as a computational 

convenience for zones of small emissivity. 

The variables Be and BS 91518 and 0526) are used to represent the 

source function at the zone centers and zone boundaries respectively. It 

will be noted that the boundary value is determined by linear interpolatior 

of the source function in terms of geometrical rather than optical dis tance. 

The two methods yield substantially the same results when the two neighboring 

zones have comparable optical thicknes ses, but the geometrical method 

gives better values when an optically thick zone occurs next to an optically 

thin zone. The terms involvinq th e boundary values cancel if both zones 

are optically thick, while the source function gradient is small for two 

transparent zones; SO that the method of interpolation is not important in 

these cases. 

* 

The sequence (0536-0563) computes the optical depth inward from 

The double subscripting, 1. e. A(K, N) has been carried over from an 
earlier version of the code in which N spectral bands were used. 
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the outer boundary of the configuration and sets various control variables 

used by the program at other locations. The index LZR specifies the las t 

zone to be included in the radiative part of the iteration scheme. The 

fireball radius, FBR, is set as the outer radius of the zone in which the 

total optical depth as measured from the outside ha s reached 0.44. ChOice 

of this value has no particular significance. For high air densities the 

optical depth increases abruptly so that any reasonable test value will. 

result in choosing of the same zone to specify the radius. For rarefied 

atmospheres, considerable limb darkening takes place and chord integrations 

would be necessary to find a precise radius. The test value of 0.44 has 

been found to yield radii satisfactory for the intended applications elsewhere 

in the code. The index MCP is used to specify the zone in which optical 

depth unity occurs as measured along the representative ray. (This 

corresponds to a radial optical depth of 2/3). 

The sequence (0564-0607) computes the wavelength at which the 

principal spectral absorption edge occurs for each zone. This wavelengtt: 

depends only upon the physical characteristics of each zone, i. e., its 

temperature, density, and zone thickness. Zones are first sorted 

according to temperature to determine whether the spectral transition 

is due to an atomic species, the nitrogen molecule, or the oxygen molecule. 

The transition edges due to atomic species are in the far ultraviolet 

and a fi t will be required only at very high altitudes when the fireball is 

transparent throughout while the temperatures are high enough so that the 

Planck function is significant tn the ultraviolet. This fit used by the coqe 

is therefore very limited in its application. 
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The nitrogen and oxygen molecular formulations involve a continuum 

with a relatively sharp long wavelength limit, and an extensive system of 

molecular bands extending from this limit toward longer wavelengths. The 

continua are assumed to exist at all times that the molecules have 

sufficient population, but the band systems, which depend upon the 

population of the higher vibrational levels, are assumed not to exist until. 

the pas s age of a vibrational relaxation period. 

While in principle the relaxation time should be measured from the 

time that each zone is first heated (actually the temperature-time history 

should be taken into account), a satisfactory first approximation is given 

by use of the time since the detonation. The relaxation time for N2 at 

-7 -7 
sea level is taken as 5 x 10 sec and for 02 as 3 x 10 secs. These 

times are scaled inversely with the density to obtain the relaxation 

times at higher altitudes. These times are based on data by Blackman (1956). 

The absorption edge and the continuum absorption due to a particular 

species must fade away as the population is diminished by dissociation. 

At a given density, the population decreases very rapidly with temperature 

as soon as kT becomes comparable with the dissociation energy. Due to 

the finite zoning structure, the population of a particular specie will be 

appreciable in one zone, but negligible in a neighboring hotter zone due 

to the rapid temperature dependence of the populations. Thus, for the 

purpose of computing absorption edges, the species can be assumed to 

exist below a certain temperature and not to exist above that temperature. 

The dissOciation is thus assumed to take place at a temperature rather than 

over a narrow temperature range. The dissociation temperatures for N 2 
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and 02 ' as a function of density, are represented in the code by two 

formulae (1708-1709) and are used in the SWAF5l subroutine (0572-0580). 

+ The sequence (0612-0669} computes the Z values (ZO in the code). 

The Z+ function depends on A c which has been determined above, and 

the temperature TR used to describe the spectral distribution of the 

radiation incident upon the zone. The sequence (0622-0642) selects this 

temperature for each zone. In the case of an optically thick fireball, this 

temperature is that of the first zone at optical depth greater than 0.7 from 

the zone in question (0628). For a transparent fireball, where the radiation 

comes from a shell rather than from a "surface", the temperature is taken 

as an optical depth weighted average of the zones interior to the zone in 

question (0624). This "shell source" sequence is important only at high 

altitudes where the fireball is transparent, and when the temperatures are 

still high enough to have radiative flow in the far UV region of the spectrum 

where the absorption edges occur. 

+ The Z values are corrected for the effects of intervening zones 

between the source of the radiation and the zone in question (0655). 

The sequence (0676-0688) becomes effective at very high altitudes 

when the configuration is quite thin and thermal radiation plays only a 

minor part in determining the temperature distribution. Under these 

circumstances, the series expansion of the source function should not 'be 

truncated and derivatives of higher order than the first should be included. 

But since the radiation is of little importance in this case, the series can 

be further truncated SO that only the zero order term is used and the code 

automatically switches over to radiative transfer for isothermal optically 

thin slabs. 
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The variable EMS (0689) is used as an estimate of the total emissivity. 

+ It corresponds to the Z function for that zone having the maximum cut-off 

wavelength, but without correction for intermediate zones. 

A.9 Radiative flux routine 

Since all the needed data has been generated elsewhere by the code, 

the radiative flux routine is particularly simple (1183). 

To perform the flux integration a boundary condition is needed. For 

this purpose, the inward flux incident on the outer boundary of the 

configuration is chosen as zero (1190). 

The inward flux at the boundary, one zone inside, is given by the sum 

of the transmitted and emitted components (1193) as in Eq. (A. 27). The 

integration continues inward until the spherical central zone is reached. 

The outward flux for this zone is the sum of the transmitted inward flux 

and the local emission (1195). The integration then proceeds outward (1197) 

using Eq. (A. 26). One can view this process as an integration starting3t 

one side of the fireball, passing through the center, and then on out the 

other side. All of the inward and ou tward fluxes needed to form the radial 

component of the flux divergences (1211) are generated during this integration. 

It should be noted that this subroutine is written again for N spectral 

bands, and that the total directional flux at a given boundary is obtained by 

a summation over the spectrum, even though only 1 spectral band is used 

by the present code. In addition, the A function used in (1193-1198) does 

not correspond to the transmission function used elsewhere in the text, 

but to (1-A) as explained in the SWABZ subroutine. 
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The energy Equation (Eq. ( A.5 » is solved by an iterative method as 

described by Hillendahl (1964). Subroutine COEFF (1395) performs the 

necessary algebra to form the required derivatives. 

The basic approach is to compute the derivatives numerically by a 

ripple zone technique, rather than to derive and to code explicit formulae 

for the derivatives. In using this technique, the temperature of a single 

zone is increased 2%, then formulae identical to those used in subroutine 

SWABZ are used to calculate those radiative properties which change as a 

result of this temperature increment (1429-1576). A flux integration is then 

carried out (1577-1593), the flux derivatives are formed (1614), and the 

perturbed variables are returned to their normal values (1627) which were 

saved (1411). This ripple zone process is repeated until all the required 

derivatives are available. Derivatives with respect to zone temperature 

more than two zones distant are truncated. 

The energy equation derivatives, including both the radiative and 

hydrodynamic parts, are formed numerically (1647). The data is then 

available to form a set of linear algebraic equations for the temperature 

increments of the zones. 

This matrix is then solved by direct elimination and back substitution 

using recursion formulae (1673) and (0447). 

This numerical method of solution, involving the ripple zone method 

of obtaining flux derivatives and the step by step formation of the energy 

equation derivatives has been found to be both convenient and economical. 

If details of the radiative properties or flux formulae are changed, 

duplicates of the new formulae are simply inserted into the coefficient 

subroutine without the necessity of deriving explicit formulae for the 
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derivatives I which in some cas8s I ,have as many as 40 terms. Such lengthy 

formulae are difficult to derive and code without errors I and the sorting of 

terms to avoid arithmetic truncation difficulties is a major task. Since the 

actual number of operations to be carried out by the computer is approximately 

equivalent in the two methods I the numerical technique is to be preferred. 

A.I0 Code listing 

The pages following presfmt a complete lis ting of an actual working 

radiation-hydrodynamic code which has been described in sections A. I-A. 9. 

No attempt has been made to edit the listing for publication purposes since 

this practice quite often results in the publication of codes that do not work. 
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I 

• FORTRAN 0001 
CFIRE 1 0002 
C HOOIFIEO OII1ENSION STATEMENT NSZ-l ONLY 0003 

DIMENSION T(lOl). TS(lOO). TP(lOO). TI1(lOO). TR(lOO). 0004 
2 PAClOO). P(lOOl. PSCI001. PP(lOOl. PMClOO). PRCIOO). 0005 
3 OECIOO). EClOOl. GMCIOO). EPUOO). EI1ClOO). ERCI00). 0006 
4 Q(1OO).VCIOOl. VSCI00). RHOZCI00).UClOO). VRClOO). 0007 
50RClOOl.OCl).RClOl). RZCI00). R2(100). UA(100). URCtOO). 0008 
6 OTM(100). DTRCIOO). OTHCI00). DPT(100). OET(100). RR(100). 0009 
7 ZI1AS(100).DIVFA(100l.DIVFRCIOO).RESDUE(100).FPelOO). FZetOO). 0010 
8 FI1CIOO). FMM(IOO). HZ(100). HP(100). HPPP(100).HPPCI00). OOtl 
9 OI1"CIOO). 011(100). DZ(100). DP(100l. DPP(100). BN(100). 0012 
1 CN(100).DN(1001.ENCI001.ETA(1001.XSCI001.GNUCI00).PART(100) 0013 

DIMENSION THETACI00) 0014 
C 00t5 
C STORAGE FOR RADIATION VARIABl.ES 0016 
C 0017 

DII1ENSION 88Cl00010). DTAUClOOolO).S(100.2). FOCtOO.lO). 0018 
1FOHIOO.IO).FIC100.10). FH(100.10). ZO(100.10),ZI(100.10) 0019 
2.AClOOolO). W(1000l0). 9C(101010). FIS(100). FOS(100), 0020 
3CWl(100. 2).YI1(100l,TAUCtOO. 2) 0021 

C0l1110N T.TS.TP.TI1.TR.PA.P.PS.PP.PI1.PR.DE.E.GI1.EP.EI1.ER.Q.V.VS.RHO 0022 
2Z.U.VR.DR.D.R.RZ.R2.UA.UR.DTI1.DTR.DTH.DPT.DET.RR,ZI1AS,DIVFA,DIVFR 0023 
3.RESDUE,FP.FZ.FI1.FI1I1.HZ,HP,HPPP,HPP,DMI1.DI1,DZ.DP.DPP.BN.CN.DN.EN 0024 
4.ETA.XS.GNU.PART.THETA.KGU.KGP 0025 
5.BB.DTAU.S.FO.FOT.FI.FIT.ZO.ZI.A.W.BC.FIS.FOS,CWL.YI1,TAU,NSZ, 0026 
6 NZSS.·. LZ.lZI11.lZI12.lZPl.LZP2,BR.RJ.RX.NCW.NI1C.NTI,FLOX,FlEX. 0027 
7TII1E.DT.CS.CR.RS.I1Cl.I1CP.I1CW.RI1.VD.ZA,NB.NQS.FBR,LZR,DTI1IN,NR 0028 
8.KZI.KZ2,KZ3.KZ4.KZ5.KZ6.KZ7.KZB.KZ.TD02.TDN2,NDP.SCAlE.EMS. 0029 
9BlANK.AST.TEE.PLUS.PERIOD.DASH.EQUAL.PINUS.FFF,UUU.PPP.NTAPE.TII1EW 0030 
6.TFLUX.FLIX.TIMES.P03.P34.P4S.PS7.P71.P47,Q47.Q71.WKT.YIElD.XYIElD 0031 

KZ6=O 0032 
REWIND 41 0033 
REWIND 31 0034 
REWIND 32 0035 
REWIND 22 0036 
REWIND 42 0037 
REWIND 25 0038 

B 8lANK=606060606060 0039 
8 AST=545454545454 0040 
8 PLUS=202020202020 0041 
8 PER 100=333333333333 0042 

0(1)=0.0 0043 
TII1EW=I.0E-I0 0044 

0045 
40 FORI1ATC17HCONTROL DATA RUN 914.6X,EtO.3.tlAl) 0046 
41 FORI1AT(14HCONSTANTS RUN 12.7H CYCLE 14.1X.IP3E12.5.0P4F4.2) 0047 
42 FORI1ATCI7HDATA CARDS CYCLE 14.10X.I0HRUN NUMBERI3.10X.5HSET AI 0048 
42 lCI4.1P5EI2.5.1PElt.4.I2.I3)) 0049 
43 FORI1AT(17HDATA CARDS CYCLE 14. lOX. 10HRUN NUMBERI3.10X.5HSET 81 0050 
43 1C I 4. 1 P5E 1 2 • 5. 1 PE 1 1 • 4. I 2. I 3 ) ) 0 05 I 
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44 FORMAT(lH .SH MOOE=14/SH NMC=14/SHNZONE=14/SH NQS=!4/SH MCL=!41 0052 
44 ISH RS=IPEll.4/SH TIME=Elt.4/SH DT=Ell.4/SH CS=Ell.4/SH CR= 0053 
44 2Ell.4/SH BR=El1.4/7H TIMEL=lPEll.4) 0054 
4S FORMAT(lHl.214.IPEI2.3.15.1PSEI2.3/(14.1P12ElO.3) 0055 
47 FORMAT(IH .19HZONE SPLIT AT NMC=14.5X.5HTIME=IPE11.4.SX.5HZONE=14. 0056 
47 119) 0057 
48 FORMAT(IHl.30X.4HRUN=14.15X.20HLOG POWER (ERGS/SEC)/6H CYCLEoX.4HT 0058 
48 2IME.3X.12.13X.12.13X.12.13X.12.13X.12.13X.12.X.11HTOTAL POWER.3X. 0059 
48 36HRAOIUS/15X.76AI) 0060 
49 FORMAT(lH .1SHREZONED AT NMC=I4.5X.SHTIME=IPE11.4.5X.5HZONE=14. 17) 0061 
50 FORMAT(14.IPSEI3.5) 0062 

NSZ=l 0063 
REWIND 15 0064 
REWIND 16 0065 
READ INPUT TAPE 5.40.NR.MODE.NMC.NLP.NDD.LZ.NZONE.NCS.MCL.TIMEL 0066 

1.8LANK.AST.TEE.PLUS.PERIOD.OASH.ECUAL.PINUS.FFF.UUU.PPP 0067 
PRINT 9321. MCL.TIMEL 0068 

9321 FORHAT(34H NORMAL TERMINATION CONDITION NMC=I4. IOX.5HTIME=IPEI2.3) 0069 
WRITE OUTPUT TAPE 15.12345.NR 0070 

12345 FORMAT(lHIIIIIIIIIII11H .40X. 32HR W HILLENDAHL PALO ALTO 201 0071 
123451111H .40X.33HPROOUCTION OUTPUT LIST RUN NUMBERI4) 0072 

READ INPUT TAPE 5.41.NR.NMC.TIME.OT.FLEX.CS.CR.BR.RS 0073 
NSTART=NHC 0074 
DTMIN=DT 0075 
NEG=NMC 0076 
MCOC=NMC+50 0077 
NMA6=HCDC 0078 
JXC=O 0079 
NHCS=NHC 0080 
TIMES=TIME 0081 
FLIX=FLEX 0082 
NSTOP=O 0083 
NRZ=50 0084 
NB=14 0085 
IPS=O 0086 
LZHI=LZ-I 0087 
LZH2=LZ-2 0088 
IF(MOOE-I)I. I. 1000 0089 
CALL ENTRY 0090 
WRITE OUTPUT TAPE 6.44 .MODE.NMC.NZONE.NQS.MCL.RS.TIME.DT.CS.CR. 0091 

IBR.TIMEL 0092 
FBR=R(100) 0093 
RTEST=RCI) 0094 
NPL=NHC 0095 
GO TO 1036 0096 

1000 READ INPUT TAPE 5.42.NMC.NR.(NHC.RCK).U(K).V(K).QeKl.TCKl.P(K).NR. 0097 
1000 lK.K=I.100) 0098 

REAO INPUT TAPE 5.43.NMC.NR.eNMC.RzeKl.R2eKl.ZHAseKl.DReK).RHozeKl 0099 
1.TReK).NR,K.K=I.IOO) 0100 

READ INPUT TAPE 5.50.NR.TIME.TEE.WKT.TDN2,TD02 0101 
READ INPUT TAPE 5.50.NR.SCALE.EQUAL.Q7I.Q47.TIMEW 0102 
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~B=NHC+l 0103 
LZ=100 0104 
NLP=~LP+25 0105 
DTHI~=DT.O.1 0106 
CALL REJUST 0107 
(PS=O 0108 
~Pl=~HC 0109 

1034 WRITE OUTPUT TAPE 6.1035.DT.DR(1).CK.R(K).RHOZ(K).V(K).TCK).U(K).Q 0110 
1(K).ZHASCK).DRCK).K=I.100) 0111 

1035 FORHATCIHI.IOHl~PUT OATA.IOX.3HOT=EI2.4.5X.3HOR=E12.4/3H K.2X.4HR 0112 
ltL).8X.7HRHOZCK1.5X.4HVCK).8X.4HTCK).8X.4HUCL).8X.4HQCKl.8X.7HZMAS 0113 
ICK).5X.5HORCK)/(14.1P8EI2.4)) 0114 

0115 
WRITE OUTPUT TAPE 6.44 .MOOE.~MC.~ZO~E.NQS.MCL.RS.TIME.OT.CS.CR. 0116 

IBR.TIMEL 0117 
FBR=RCIOO) 0118 
RTEST=R(l) 0119 

1036 NTAPE=15 0120 
GO TO 3000 0121 

CHASTER CYCLE RE-ENTRY POINT 0122 
2000 TIHE=TIME+OT 0123 

CROUT INE TO CHANGE NUMBER OF ZONES IN USE .... LIMIT 100 ZONES 0124 
10 DO 14 J=I.l00 0125 

K=IOI-J 0126 
IFCUCK)-I.OE+02) 11.12.12 0127 

11 IFCTCK)-2.0-TCI00)) 14.14.12 0128 
12 LZ=K+6 0129 
13 GO TO 16 0130 
14 CONTINUE 0131 
15 LZ=100 0132 
16 IF (L Z -I 00) 18. 18. 17 0133 
17 LZ=100 0134 
18 LZMJ=LZ-I 0135 
19 LZM2=LZ-2 0136 
20 LZPl=LZ+l 0137 
21 LZP2=LZ+2 0138 
22 FLEX=FLEX+FLOX*OT 0139 
23 IF(~MC) 33.24.26 0140 
24 NTAPE=15 0141 

CNCLZ)=O.O 0142 
TFLUX=FLOX 0143 
FLEX=O.O 0144 

25 GO TO 732 0145 
26 IF(~MC- 3) 27.27.29 0146 
27 NTAPE=6 0147 
28 GO TO 32 0148 
29 IF(TIME-TIMEV) 33.30.30 0149 
30 TIMEW=TIMEV.C10.0 •• (1.0/18.0)) 0150 

IFCNHC- 4) 31.29.31 0151 
31 NTAPE=15 0152 

LZP2=Nt 0153 
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I 
32 CN(LZ1=(TIME-TIMES1/FLOATF(NMC-~Sl 0154 

TFLUX=(FLEX-FLIX1/(TIME-TIMESl 0155 
732 CALL CGSPO 0156 

NOP-NaP 0157 
FLIX=FLEX 0158 
NMCS=NHC 0159 
TIMES=TIME 0160 
LZP2=LZ+2 0161 

33 CONTINUE 0162 
0163 

494 IF(NHC-HCOC) 414.409.409 0164 
409 HCOC=HCOC+50 0165 

RE~INO 16 0166 
HOOE=HOOE+I 0167 
~RITE OUTPUT TAPE 16.40.NR.HOOE.NHC.NLP.NEG.LZ.NZONE.NQS.HCL. 0168 

ITIHEL.BLANK.AST.TEE.PLUS.PERIOO.OASH.EQUAL.PINUS.FFF.UUU.PPP 0169 
~RITE OUTPUT TAPE 16.41.NR.NHC.TIHE.OT.FLEX.CS.CR.BR.RS 0170 
~RITE OUTPUT TAPE 16.42.NHC.NR.CNHC.R(K).UCK).VCK).QCK).TCK). 0171 

1 PC K ) • NR. K. K = 1 • 1 00) 0 I 72 
WRITE OUTPUT TAPE 16.43.NHC.NR.CNHC.RZ(K).R2CK).ZHASCK).ORCK). 0173 

lRHOZCK).TRCK1.NR.K.K=I.100) 0174 
WRITE OUTPUT TAPE 16.50.NR.TIHE.TEE.WKT.TON2.T002 0175 
~RITE OUTPUT TAPE 16.S0.NR.SCALE.EQUAL.Q71.Q47.TIHEW 0176 
HOOE=HOOE-I 0177 

0178 
C REZONE S~ITCH 0179 
414 RTEST=RCLZ-Sl 0180 

NZTS=LZ-l1 0181 
IFCHCP-3) 415.415.4150 0182 

C 4150 ALL OPTICALLY THICK CASES 0183 
4150 NZTS=HCP-4 0184 

PHT=2.5S 0185 
4153 IFCNZTS-9) 427.417.417 0186 
C 415 ALL TRANSPARENT CASES 0187 
415 IFCT(4)-2.0.TON2) 4170.4170.416 0188 
C 416 HIGH ALTITUDE EARLY PHASE 0189 
4 16 00 4 1 61 L = 9. L Z 0 I 90 

IFCTCL)-I.S.TON2) 4160.4161.4161 0191 
4160 NZTS=L-l 0192 

PHT=I.S 0193 
IFCNZTS-9) 427.417.417 0194 

4161 CONTINUE 0195 
C 4170 LATE TIME TRANSPARENT CASE 0196 
4170 00 4140 J=11.LZ 0197 

IFCRCJ)-WCl.9)) 4140.4141.4141 0198 
4141 NZTS=J-5 0199 

PHT=2.8 0200 
IFCNZTS-9) 427.417.417 0201 

4140 CONTINUE 0202 
417 00 426 K=9.NZTS 0203 
4013 IFCNHC-NRZ) 427.427.419 0204 
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419 
422 
423 
424 
425 
9425 

IFCCRCKl-RCK-2ll-0.0a.RTESTl 422.422.426 
IFCABSFCTCKl-TCK-lll-0.30.TCK» 423.423.426 
IFCABSFeYCKl-YCK-l»-O.7-YCKl) 424.424.426 
IFCZHASCK)+ZHASCK-l)-PHT.ZHASCK-2l) 425.425.426 
IF(QCK)-0.05.PCK» 9425.9425.426 
LZP2-K 
NRZ=NHC 
JXC=JXC+l 
WRITE OUTPUT TAPE22.49.NMC.TIME.LZP2 .JXC 
WRITE OUTPUT TAPE 6.49.NHC.TIHE.LZP2 .JXC 
CAll REZONE 
lZ=LZ-l 
lZH2=LZ-2 
LZH1=lZ-t 
lZPI=LZ+l 
lZR=LZR-2 
llP2=lZ+2 
NRZ=NHC+2 
GO TO 427 

426 CONTINUE 
C OPTICAL SPLIT TEST 
427 NS=LZ-5 

428 
429 

430 
431 
432 
433 
434 
435 

436 

437 

440 
441 
442 
443 

444 

KS=O 
IFCNMSP-NMC) 428.428.448 
00 440 J=3.NS 
K=LZ-J 
IFC(RCK)-RCK-l))-0.08.RCLZ)) 430.430.442 
IF(TAUCK.l)-1.7) 440.440.431 
KS=KS+i 
IFCKS-I) 448.433.448 

-JFCQ(Kl-PCK» 448.434.434 
IF(UCK1-l.OE+05) 448.435.435 
KST=K 
KSP=K+5 
00 436 J=KST.KSP 
IF((RCJ1-RCJ-l11-200.0) 436.436.437 
CONTINUE 
GO TO 448 
KZ2=J 
IF(TCJ)-6.0E+041 443.448.448 
CONTINUE 
GO TO 448 
KZ2=K 
NHSP=NMC+3 
JXO=JXO+l 
CALL SPLIT 
WRITE OUTPUT TAPE 6.47.NMC.TIME.KZ2.JXO 
WRITE OUTPUT TAPE 22.47.NMC.TIME.KZ2.JXO 
LZ=LZ+l 
LZf11=LZ-l 
LZPl =LZ+ 1 
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0205 
0206 
0207 
0208 
0209 
0210 
0211 
0212 
0213 
0214 
0215 
0216 
0217 
0218 
0219 
0220 
0221 
0222 
0223 
0224 
0225 
0226 
0227 
0228 
0229 
0230 
0231 
0232 
0233 
0234 
0235 
0236 
0237 
0238 
0239 
0240 
0241 
0242 
0243 
0244 
0245 
0246 
0247 
0248 
0249 
0250 
0251 
0252 
0253 
0254 
0255 



LZP2-LZ+2 0256 
L~2.LZ-2 0257 

0258 
448 IF(NHC-NSTART) 449.451.449 0259 
449 IF(~-NSTA.T-l) 450.451.450 0260 
450 IF(~-NOO) 453.451.453 0261 
451 KZ2=-451 0262 
452 CALL OIAGNS 0263 
453 NMC=N~+1 0264 

0265 
C 0266 

IF(NSTOP) 35.35.36 0267 
35 IFnIl'1E-6.0) 34.52.52 0268 
34 IF[SENSE SWITCH 1) 52.65 0269 
52 "ooE="OOE+l 0270 

NSTOP= 1 0271 
~L="CL+3000 0272 
CALL OIAGNS 0273 
GO TO 28 0274 

36 PUNCH 40.NR.HODE.NHC.NLP.NEG.LZ.NZONE.NQS.MCL.TIHEL 0275 
1.BLANK.AST.TEE.PLUS.PERIOD.DASH.EQUAL.PINUS.FFF.UUU.PPP 0276 

PUNCH 41.NR.NHC.TIME.DT.FLEX.CS.CR.8R.RS 0277 
PUNCH 42. NHC.NR.CNHC.RCK).UCK).VCK).QCK).TCK).P(K).NR.K.K=I.100) 0278 
PUNCH 43.NMC.NR.CNMC.RZ(K).R2(K).ZHASCK).DRCK).RHOZCKl 0279 

I.TRCK1.NR.K.K=I.100) 0280 
PUNCH 50.NR.TIHE.TEE.WKT.TDN2.TD02 0281 
PUNCH 50.NR.SCALE.EQUAL.Q71.Q47.TIMEW 0282 
END FILE 15 0283 
END FILE 25 0284 
REWIND 25 0285 
CALL COpy C 25. 15) 0286 
END FILE 15 0287 
END FILE 22 0288 
REWIND 22 0289 
CALL COPY(22.15) 0290 
END FILE IS , 0291 
WRITE OUTPUT TAPE 6.37.JXC 0292 

37 FORHAT(IH .13HREZONE CALLEDI4.6H TIMES) 0293 
REWIND 16 0294 
NR=9999 0295 
WRITE OUTPUT TAPE 41. 1499.NR.KZ6 0296 
wRITE TAPE 31.NR.KZ6 0297 

1499 FORMAT(214) 0298 
WRITE OUTPUT TAPE 32. 45.NR.NHC.TIHE.LZ.P(99).TC99).RHOZC99).POWER 0299 

2.P47.FBR.CK.RCK).UCK).PCK).URCK).TCK).FOSCK).FISCK).DHCK).QCK). 0300 
3FZ(K).ECK).HPPPCK).K=I.LZ) 0301 

IFC....c:-NHAS) 1502.1502.1501 0302 
1501 READ INPUT TAPE 16.40.NR.HOOE.NHC.NLP.NEG.LZ.NZONE.NQS.HCL. 0303 

ITIHEL.BLANK.A$T.TEE.PLUS.PERIOD.OASH.EQUAL.PINUS.FFF.UUU.PPP 0304 
READ INPUT TAPE 16.41.NR.NHC.TIHE.OT.FLEX.CS.CR.BR.RS 0305 
READ INPUT TAPE 16.42.NHC.NR.CNHC.RCK).U(K).V(K).QCK).TCK). 0306 
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IPCK).NR.K.K=l.lOO) 0307 
READ INPUT TAPE 16.43.NHC.NR.(NHC.RZCK).R2CK).ZHASCK).DRCK). 0308 

lRHOZCK).TRCK).NR.K.K=1.100) 0309 
READ INPUT TAPEI6.50.NR.TIHE.TEE.WKT.TDN2.TD02 0310 
READ INPUT TAPEI6.S0.NR.SCALE.EQUAL.Q71.Q47.TIMEW 0311 
PUNCH 40.NR.HODE.NHC.NLP.NEG.LZ.NZONE.NQS.HCL.TIMEL 0312 

1.BlANK.AST.TEE.PLUS.PERIOD.DASH.EQUAL.HINUS.FFF.UUU.PPP 0313 
PUNCH 41.NR.NHC.TIHE.DT.FLEX.CS.CR.BR.RS 0314 
PUNCH 42. NHC.NR.CNHC.RCK).UCK).VCK).QCK).TCK).PCK).NR.K.K=I. 100) 0315 
PUNCH 43.NHC.NR.(NHC.RZeK).R2eK).ZHASCK).DRCK).RHOZCK) 0316 

1.TRCK).NR.K.K=I.100) 0317 
PUNCH 50.NR.TIHE.TEE.WKT.TDN2.TD02 0318 
PUNCH SO.NR.SCALE.EQUAL.Q71.Q47.TIHEW 0319 
END FILE 16 0320 

1502 CALL UNLOADCI6) 0321 
CEASE=1.0E+29 0322 
END FILE 32 0323 
END FILE 42 0324 
REWIND 42 0325 
CALL COPY(42.32) 0326 
CALL UNlOAD(42) 0327 

0328 
C EXTRA COpy OF USER TAPE 32 INFO COPIED AS FILE 2 OF TAPE 15 0329 

END FILE 32 0330 
REWIND 32 0331 
CALL COPYC32.15) 0332 
END FILE 15 0333 
CALL COpy (32.1S) 0334 
EN() FILE 15 0335 
CALL UNLOAD(15) 0336 
CALL UNLOAD(32) 0337 
END FILE 41 0338 
CALL UNlOAD(41) 0339 
END FILE 31 0340 
CALL UNLOAD(31) 0341 

IS00 CALL EXIT 0342 
65 NT[=O 0343 

IFCNMC-HCLl 64.64.52 0344 
64 IF(TIHE-TIHEL) 66.66.52 0345 
C SET RETARDED VARIABLES 0346 
66 DO 71 K=I.I00 0347 
67 VRCK)=V(K) 0348 
68 ERCK)=ECK) 0349 
69 PRCK)=P(K) 0350 
70 VCK.4l=T(K) 03S1 

WCK.6)=VCK) 0352 
W(K.7,=PCK) 0353 
WCK.8)=QCK) 0354 
WCK.9)=ECK) 0355 

71 DIVFRCK)=DIVFACK) 0356 
KRT=O 0357 
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72 IF(DT-50.0-DTHINl 74.74.73 
73 DTHIN=DT/50.0 
74 CALL HYDRO 

KZ4=KZ4 
IFCU(99l-1.0E+03) 290.290.52 

C INITIAL TEMPERATURE EXTRAPOLATION 
290 CONTINUE 
C ITERATION CYCLE RE-ENTRY POINT 
C DERIVATIVES WITH RESPECT TO TEMP OP 
3000 00 301 K=I.lZ 
3001 IFCTCK» 3002.3002.300 
3002 KZ2=-3000 

CAll OIAGNS 
GO TO 52 

300 TP(K)=1.02-TCK) 
301 TSCK)=TP(K) 
303 CAll STATE 
304 00 310 K=I.lZ 
305 PPCK)=PCK) 
306 EPCK)=ECK) 
309 TMCK)=0.98-TCK) 
310 TSCK)=TMCK) 
311 CALL STATE 
312 00 318 K=I.LZ 
313 PMCK)=PCK) 
314 EMCK)=ECK) 
315 DPTCK)=(PPCK)-PMCK»/CTPCK)-TMCK» 
316 DETCK)~CEPCK)-EMCK»/CTPCK)-TMCK» 
318 TSCK)=T(K) 
320 CALL STATE 
C CALL RADIATIvE PROPERTIES ROUTINE 

CALL SWABZ 
501 LZR=LZR 

MCP=MCP 
KZ1=KZl 
KZ2=KZ2 
KZ3=KZ3 
KZ8=KZ8 
KZ9=KZ9 

321 NCW=NCW 
322 DTAUCLZP1.1)=0.0 

C INTENSITY INTEGRATION 
500 CAll FLUXS 
502 IFCIPS) 503.503.530 
503 IPS=IPS+l 
504 TIHE=TIME-DT 
505 GO TO 2000 
C TEMPERATURE TEST BYPASS ON FIRST GUESS 
530 IFCNTI) 540.540.532 
C TEMPERATURE TEST 
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DE 

0358 
0359 
0360 
0361 
0362 
0363 
0364 
0365 
0366 
0367 
0368 
0369 
0370 
0371 
0372 
0373 
0374 
0375 
0376 
0377 
0378 
0379 
0380 
0381 
0382 
0383 
0384 
0385 
0386 
0387 
0388 
0389 
0390 
0391 
0392 
0393 
0394 
0395 
0396 
0397 
0398 
0399 
0400 
0401 
0402 
0403 
0404 
0405 
0406 
0407 
0408 



532 DO 536 K=l.LZ 0409 
533 IF(ABSF(OTt1(K1IT(Kll-0.1 1 .536.536.540 0410 
536 CONTINUE 0411 
C t1AIN CYCLE COt1PLETEO -- RETURN TO 2000 0412 
531 GO TO 2000 0413 
540 NTI=NTJ+I 0414 
C ENERGY EQUATION BLOCK 600 0415 
600 IF(NTB-3) 601.601.2000 0416 
601 DO 617 K=t.LZ 0417 
602 L=K 0418 
603 N=llO+K 0419 
613 OECK1=CECK1-ER(K»/DT 0420 
614 PACK1=CPRCK)+PCK»/2.0 0421 
615 RESDUECKl=DECK)+CPACK)+QCK».CVCK1-VRCK)/DT 0422 
625 1+(DIVFACK)+DIVFRCK»/2.0 0423 
617 CONTINUE 0424 
C TE~RATURE ITERATION OF ENERGY EQUATION 0425 
700 IFCLZR-4) 703.703.701 0426 
701 CALL COEFF 0427 
702 GO TO 829 0428 
C NO ITERATION OF RADIATION 0429 
703 00 704 K= 1. LZ 0430 
704 DTHCK1=-RESDUECK)/C(OETCK)/DT)+CDPTCK)/C2.0.DT».(V(K)-VRCK»)) 0431 
705 IFCNHC-NlP) 906.706.906 0432 
706 NLP=NLP+50 0433 

PRINT 707.NMC.TIME.DT.LZ 0434 
707 FORHATC23H PROGRESS REPORT NHC=14. 5X.5HTIME=IPEI2.3.5X.I1HTIME 0435 
707 I STEP=lPEI2.3.10X.5HNORAD(4111) 0436 
708 GO TO 906 0437 

0438 
C RADIATIVE ITERATION 0439 
829 CONTINUE 0440 
830 IF(NMC-NlP) 987.831.987 0441 
831 NLP=NLP+50 0442 

PRINT 832.NMC.TIME.DT.LZ 0443 
832 FORt1AT(23H PROGRESS REPORT NMC=14. 5X.5HTIME=IPE12.3.5X.l1HTIME 0444 
832 I STEP=IPEI2.3.10X.8HRADHYDROI4111) 0445 
C 0446 
C COEFFICIENTS NOW KNOWN-SOLUTION FOR DTMeK) 0447 
987 LZJ=lZR+l 0448 

00988 K=LZJ.LZ 0449 
988 DTI1( K) =-RESDUECK )/( (OETCK) lOT) +( DPTCK) I( 2. O.DTl).( V( K) -VRCK») 0450 
900 OTH(LZR)=(ENCLZR)-ENCLZR-l»/CCNCLZR)-CN(LZR-I» 0451 
902 DTH(LZR-l)=(EN(LZR-I)-CNCLZR-I).DTMCLZR» 0452 

DO 905 J=3.LZR 0453 
K=LZJ-J 0454 

905 OTt1CK'=ENCK1-ONCK).OTt1CK+2)-CNCK).OTt1CK+t) 0455 
906 CONTINUE 0456 
C STABILITY CHECK 0457 
907 00 930 K=I.LZ 0458 
908 IF(OTI1(K») 909.930.910 0459 
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909 IFCABSFCDTHCK»-0.5.TCK») 930.930.918 0460 
910 IFCTCK)-2.0E+OS) 912.911.911 0461 
911 IFCABSF(DTM(K»-0.9.T(K» ~30.930.918 0462 
912 IFCABSF(DTHCK»-S.O.TCK» 930.930.918 0463 
918 KZ2=-920 0464 
919 KZ5=K 0465 
920 CALL DIAGNS 0466 
921 KRT=KRT+l 0467 
922 IFCKRT-3) 923.933.933 0468 
923 00 927 L=I.LZ 0469 

U(Ll=VCL.3) 0470 
T(L)=VCL.4) 0471 
RCL)=VCL.S) 0472 
VCL)=VCL.6) 0473 
PCL)=VCL.7) 0474 
QCL)=VCL.8) 0475 
ECL)=VCL.9) 0476 
R2CL)=RCL) •• 2 0477 

927 CONTINUE 0478 
928 VRITEOUTPUT TAPE 6.929.NMC.KRT.K 0479 

PRINT 929.NMC.KRT.K 0480 
929 FORMAT(4I8) 0481 

NTI=O 0482 
GO TO 74 0483 

930 CONTINUE 0484 
C MODIFY TEMPERATURE 0485 
933 00 934 K=I.LZ 0486 
934 HK)=TCK)+DTMCK) 0487 
935 GO TO 3000 0488 
936 END 0489 
• FORTRAN 0490 
CF1SVZ 0491 

SUBROUTINE SWABZ 0492 
C STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM 0493 

D(1)=0.0 0494 
0495 

DO 126 K=I.LZ 0496 
00 135 N=I.NSZ 0497 
TSCK)=TSCK)/11606.5 0498 
ETACK)=1.293E-03.V(K) 0499 
ALPHA=9.0+EXPFC-TIME/I.OE-03.CETACK) •• 2» 0500 
BETA=CC6.0E-18.VCK» •• O.5).CTSCK) •• 0. I) 0501 

300 ZICK.I)=EXPFC-I.S.CRCK)-RCK-I» ICCETACK) •• I.S)/CCTSCK) •• ALPHA) 0502 
300 2+BETA) +0.2.CETACK) •• 1.91)/CTSCK) •• 2.73) 0503 
300 3+0.023.CETACK) •• 1.8).CTSCK) •• 0.2S)+I.OE-07.CETACK) •• 2.0)1 OS04 
300 4CCTSCK) •• C-S.O»+4.0E-14.VCK»» 0505 

ZICK.I)=ZICK.I).0.99999998 OS06 
ZICK.2)=ZICK.I) 0507 
HHFP=CETACK) •• I.SJ/CCTSCK) •• ALPHA)+BETA) 0508 

1+0.2.CETACK) •• 1.91)/CTSCK) •• 2.73) OS09 
2+0.023.CETACK) •• 1.8).CTSCK) •• 0.2S) 0510 
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3+1.0E-07·(ETA(~) •• 2.0).(TS(~) •• 5.00) 
HHFF·9.3E-06.(ETA(~) •• 2.0).(TS(~)·.3.5) 
IF(TS(~)-IO.O) 301.298.298 

298 IF(HHFF-HMFP) 299.301.301 
299 t-I1FP -Ht1F F 
301 OTAU(~.I)=1.5.(R(~)-R(~-1»/HMFP 
302 . A(~.N)=EXPFC-OTAUC~.N» 
312 8CC~.N)=5.67E-OS.CTC~) •• 41 

TSC~)=TSC~).11606.5 
135 CONTINUE 
126 CONTINUE 

C SOURCE FUNCTION INTERPOLATION 
DO 201 ~=l.LZ 
DO 202 N=l.NSZ 

311 8B(K.N)=CC((CRC~+I)-RC~l).T C~) •• 4)+CCRCK)-RCK-l».T CK+l) •• 4»1 
311 1(RCK+l1-RCK-l»».5.67E-05 

BBCK.2)=BBCK.l) 
506 SCK.Nl=CBCCK.Nl-BCCK+l.N»/CDTAUCK.N)+OTAUCK+l.N» 
507 WCK.Nl=I.O-ACK.N)-ACK.Nl.OTAUCK.N) 
508 IF(W(K.Nl-l.0E-04) 509.202.202 
509 WCK.Nl=0.5.COTAU(K.N) •• 2) 
202 CONTINUE 
201 CONTINUE 

C SET OPTICAL INDICES 
Kf1=O 

501 KD=O 
502 KN=O 
503 TAUCLZ.l)=DTAU(LZ.l) 
511 DO 522 J=I.LZf11 
512 K=lZ-J 
513 TAUCK.ll=TAUCK+l.1)+OTAUCK.l) 
514 IF(TAUCK.l1-5.0E-06) 522.515.515 
515 KN=KN+l 
516 IFCKN-l) 518.517.518 
517 lZR=K+3 
518 IFCTAU(K.l1-.44) 522.519.519 
519 KD=KO+l 
520 IFCKD-l) 622.523.622 
523 FBR=RCK) 
622 IFCTAUCK.l)-1.0) 522.623.623 
623 KM=KM+l 
624 IFCKf1-1) 522.625.522 
625 MCP=K 
522 CONTINUE 
525 IFCLZR-LZ+1) 530.530.529 
529 LZR=lZ-1 
530 CONT INUE 

IF(KO) 521.521.524 
521 FBR=O.O 
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0512 
0513 
0514 
051~ 
0516 
0517 
0518 
0519 
0520 
0521 
0522 
0523 
0524 
0525 
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0527 
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0530 
0531 
0532 
0533 
0534 
0535 
0536 
0537 
0538 
0539 
0540 
0541 
0542 
0543 
0544 
0545 
0546 
0547 
0548 
0549 
0550 
0551 
0552 
0553 
0554 

·0555 
0556 
0557 
0558 
0559 
0560 

·0561 



'1(P-O 0562 
524 CONTINUE 0563 
C SET CUTOFF ~AVELENGTH C~L(K) 0564 

CWHAX=O.O 0565 
KC~HAX=O 0566 
C~L(HCP.I)=O.O 0567 
NC~=HCP 0568 
TR01CP)=TCH(P) 0569 

0570 
540 00 565 K=I.LZ 0571 
541 IF(T(K)-TDN2) 546.542.542 0572 

0573 
C OPACITY DUE TO ATOMIC SPECIES 0574 
542 CWL(K.l)= 700.0-EXPFC-0.36.CTCK)-11606.5)/11606.5) 0575 
8544 DTH(K)=212121212121 0576 

IFCC~LCK.l)-275.0) 545.560.560 0577 
545 C~L(K. 1 )=275. 0 0578 

GO TO 560 0579 
546 IF(TCK)-TD02J551.547.547 0580 

0581 
C OPACITY DUE TO N2 HOLECULE 0582 
8 547 DTHCK)=454545454545 0583 

TCN2=5.0E-07-1.293E-03-VCK) 0584 
549 CWLCK.l)=1140.0.C(CRCK)-RCK-I»/CYCKJ-l.293E-03» •• 0.1I) 0585 

l-CI.0-EXPFC-TIME/TCN2» 0586 
IFCCWLCK.l)-IOOO.O) 550.560.560 0587 

550 C~LCK.l)=IOOO.O 0588 
GO TO 560 0589 

0590 
C OPACITY DUE TO 02 MOLECULE 0591 
551 TC=4250.0-271.0.LOGFCI.293~-03. YCK» 0592 

TC02=3.0E-07.1.293E-03-YCK) 0593 
8 552 DTHCK)=676767676767 0594 
553 IFCTCK1-TC1554.554.556 0595 
554 CWLCK.l)=1500.0+TSCK)-CO.163+0.0745.LOGFCDRCK).RHOZCK)11.293E-03» 0596 
554 l-C].0-EXPFC-TIME/TC02J) 0597 
555 GO TO 557 0598 
556 TS8=TSCK).C.0647-LOGFCRCKJ-RCK-IJ)-0.25-.109.LOGFC1.293E-03.V(K») 0599 

CWL(K.l1=3500.0+TSB-C2000.0+TS8)-EXPFC-TIME/TC02) 0600 
557 IFCCWLCK.])-1500.0) 558.560.560 0601 
558 C~L(K.I )=1500. 0 0602 
560 IFCK-MCPl 565.565.561 0603 
561 IFCCWLCK.ll-CWMAX) 565.565.563 0604 
563 CWHAX=CWLCK.l) 0605 
564 KC~"AX=K 0606 
565 CONTINUE 0607 
566 NCW=KC~HAX 0608 

0609 
IFCLZR-NC~) 603.603.604 0610 

603 LZR=NCW+ 1 061 I 
C CALCULATE ZO VALUES 0612 

140 



604 ZO(I.I)-ZI(I.I) 
KO=O 

605 DO 670 L=2.LZ 
TRCL )=TCL) 
IF(TCLl-9.0E+041 607.669.669 

607 KO=KO+I 
IF(KO-I) 609.609.609 

609 P1S=L-l 
609 IF(DTAUCL.ll-l.O) 610.669.668 
C SELECT TRCll= TEMPERATURE OF RADIATION TRAVERSING ZONE L 
610 LIP1=l-1 
611 T AUSUM=O. 0 
615 00 630 NN=I.LIM 
616 P1=l-NN 
617 TAUSUP1=TAUSUM+DTAUCM.I) 
620 IF(TAUSUM-0.7) 630.627.627 
627 TRCL) =T(M) 
628 IFCP1-2), 630.630.638 
630 CONTINUE 

IFCT(Ll-2500.0) 631.632.632 
631 TRCL)=TRCL-l) 

GO TO 637 
632 EPTSUM=O.O 

EPSUM=O.O 
00 635 K=3. LlP1 
EPSUP1=EPSUP1+DTAUCK.l) 
EPTSUP1=EPTSUM+TCK)-OTAUCK.I) 
IFCT(K)~2500.0) 636.636.635 

635 CONTINUE 
636 TRCL)=EPTSUM/EPSUM 
637 "'=2 
638 I Z=P1+ 1 
639 DO 646 1=IZ.l 
640 IFCTRCL)-CWLC].I)-2.0E+08) 641.641.644 
641 ZICI.2)= EXPFCC-3.4IE-08-CWLCI.I)-TRC l )+2.5E-25-CCCWlCI.I)-TRCl 
641 2» __ 3»_EXPFC-3.07E+13/CCCWLCI.I)-TRC L »--1.8») 
642 GO TO 646 
644 ZI(I.2)=7.61E+22/CCCWLCl.I)_TRC l »--3) 
646 CONTINUE 

ZP1AX=Z J( 1'1+ 1.2) 
ZOCL.ll=ZlCH+l.2) 

647 IF(L-P1-1) 669.663.650 
C CORRECTION FOR INTERP1EDlATE ZONES 
650 IZ=f1+2 
651 CWLTST=CWLCH+l.l) 
652 00 660 NZ=lZ.l 
653 IFCCWlCNZ.I)-CWLTST) 654.654.657 
654 )F(NZ-L) 660.655.668 
655 ZOCL.I)=1.0 
656 GO TO 660 
657 ZOCL.l)=ZICNZ.2)/ZHAX 
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,0613 
0614 
0615 
0616 
0617 
0618 
0619 
0620 
0621 
0622 
0623 
0624 
0625 
0626 
0627 
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,0630 
0631 
0632 
0633 
0634 
0635 
0636 
0637 
0638 
0639 
0640 
0641 
0642 
0643 
0644 
0645 
0646 
0647 
0648 
0649 
0650 
0651 
0652 
0653 
0654 
0655 
0656 
0657 
0658 
0659 
0660 
0661 
0662 
0663 



658 CVLTST-CVL(NZ.l) 0664 
659 lHAX-ZICNZ.2) 0665 
660 CONTINUE 0666 
663 IF(Z~CL.l)-ZICL.I» 670.668.668 0667 
668 Z~ ( L. 1 ) e Z I C L. 1 ) 0668 
670 CONT INUE 0669 
671 DO 676 K=I.LZ 0670 
672 IF(OTAU(K.I)-I.OE-04) 673.675.675 0671 
673 ACK. 1 )=OTAUCK. I) 0672 
674 GO TO 676 0673 
675 ACK. 1 )=1. O-ACK.I) 0674 
676 CONTINUE 0675 

00 699 K= I. LZ 0676 
IFCSCK.l)-1.69E+38) 767.767.677 0677 

767 HZ(K)=BBCK.I)-ACK+l.1) 0678 
OZ(K)=2.0-SCK.I)-VCK+I.I) 0679 
HPCK)=BCCK+l.1 )-ACK+l.l) 0680 
IF(HZ(K)-OZ(K)-HP(K).O.OI) 677.677.699 0681 

677 SCK.I)=O.O 0682 
678 BBCK.l)=BCCK+I.I) 0683 
679 BBCK. 2)=BCCK. I) 0684 
699 CONTINUE 0685 
900 IFCBCCI.I)-BC(2.1» 915.916.916 0686 
915 sac I. 2)=BC( 1.1) 0687 
916 CONTINUE 0688 

EMS= Z I C NCW .2) 0689 
179 RETURN 0690 

END 0691 
0692 

- FORTRAN 0693 
CFIRJST 0694 

SUBROUTINE REJUST 0695 
C STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM 0696 

TD02=7100.0-EXPFCCO.43429-l0GFCRHOZ(99)/1.293E-03»/5.3) 0697 
TDN2=15000.0-EXPF(CO.43429-LOGFCRHOZC99)/1.293E-03»/4.8) 0698 
RETURN 0699 
END 0700 

- FORTRAN 0701 
CFIRZNE 0702 

SUSROU TINE RE ZONE 07 03 
C STANDARD DIMENSION AND COMHON STATEMENTS AS IN MAIN PROGRAM 0704 

0705 
H=LZP2 0706 
Z,ETA= (T e M-l 1 +T(Ml )/(E (M-1 ) +E eM)) 0707 

C ROUTINE TO COMBINE ZONES M AND M-I 0708 
FKE= CZHASCH-2)-CUCM-2)--2)+ZMASCM-l1-((UCM-I)--2)+(U(M-2)--2) 0709 

2)+ZHASCM)-CCU(M-l) •• 2)+(UCM) •• 2)+ZMASCM+I).(U(H) •• 2» 0710 
FHV=CZHAS(H-2).U(M-2)+ZMASCM-I)-(UCM-l)+UCH-2»+ZHASCM)-CU(M-l) 0711 

2+U(H»+ZMASCH+l).UCH» 0712 
FKA=ZHAS(H-2)+ZHAS(H-I)+ZMASCH) 0713 
FKB=ZHASCH-I)+ZHASCH)+ZHAS(H+l) 0714 
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FKB-FKB/FKA 
FKE·FKE/FKA 
F"Y·F"Y/FKA 
FSR=CFKE.FKB1.CFKB+I.0)-FKB.CFMY·.2) 
IFCFSR) 7700.7701.7701 

7700 UC"-2)=UCM-2) 
UC"-tl=UCM) 
GO TO 7733 

7701 FSR:,ICFSRIIO.5)/FKB 
UPLUS=(F"V+FSR)/CFKB+I.O) 
U"INS=CFMV-FSR1/CFKB+l.0) 
IFCU01-2)-UCM» 7722.7711',7711 

7711 UCM-2)=UPlUS 
UCM-l)=UMINS 
GO TO 7733 

7722 U(M-21=UMINS 
UCM-l1=UPLUS 

7733 CONTINUE 
2 ECM-ll=CZMASCM-I).ECM-I)+ZMASCM).ECM»/CZMAS(M-I)+ZMASCM» 
3 TCM-l)=(ECM-I) '.ZETA) 
4 ZMASCM-I)=ZMASCM-l)+ZMASCM) 
5 0IVFA(M-l)=CR2CM)/ZMASCM-I».CFOSCM)-FISCM» 
5 I-CR2(M-2)/ZMASCM-l».CFOSCM-2)-FISCM-2» 
7 RCM-l)=RCM) 
B RzeH-ll=RzeM) 
9 R2(M-I)=R2CM) 
10 ORCM-ll=ORCM-l)+ORCMl 
II RRCM-t)=RRCM) 
13 TRCH-I)=TRCM) 
14 VCM-l)=CRCM-l) •• 3-RCM-2) •• 3)/C3.0.ZMASCM-I» 
15 PCM-l)=CPCM-l)+PCM»/2.0 
16 OCM-l)=COCM-l)+OCM»/2.0 

OTM01-1 )=0. 0 

C SHIFT IN EXTERIOR ZONES 
20 00 50 K=M.99 
21 VCK)=VCK+l) 
22 TCK)=TCK+l) 
23 RHOZ(K)=RHOZCK+l) 
24 UCK)=UCK+l) 
25 PCK)=PCK+l) 
26 RCK1=RCK+l) 
27 R2eK)=R2CK+I) 
28 RZ(Kl=RzeK+l) 
29 OR(t('=ORCK+l1 
30 O(K)=Q(K+I) 
31 E(K)=E(K+l) 
32 0IVFACK)=0IVFA(K+l1 
33 URCK1=URCK+l) 
34 ZHASeK)=ZHAS(K+l) 
35 RR(K)=RRCK+I) 
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0715 
0716 
0717 
0718 
0719 
0720 
0721 
0722 
0723 
0724 
0725 
0726 
0727 
0728 
0729 
0730 
0731 
0732 
0733 
0734 
0735 
0736 
0737 
0738 
0739 
0740 
0741 
0742 
0743 
0744 
0745 
0746 
07<47 
0748 
0749 
0750 
0751 
0752 
0753 
0754 
0755 
0756 
0757 
0758 
0759 
0760 
0761 
0762 
0763 
0764 
0765 



DTHCK)=DTHCK+I) 0766 
50 TRCK).TRCK+l) 0767 

0768 
C ADDITION OF NE~ ZONE 100 0769 
51 R(100)=R(99)+ORC99) 0770 
52 R2CIOO)=RCIOO) •• 2 0771 
S3 RZCIOO)=RCIOO) 0772 
54 RHOZCIOO)=RHOZC99) 0773 
55 RRCI001=1.0 0774 
56 DRCI001=DR(99) 0775 
57 ZMASCIOO)=CRHOZCIOO)/J.0).CCRZCIOO) •• 3)-CRZC99) •• 3») 0776 
58 UCIOO)=O.O 0777 
59 TCIOO)=Te99) 0778 
60 VeI001=V(99) 0779 
62 QCI001=0.0 0780 

0781 
TCIOll=TeIOO) 0782 
RETURN 0783 
END 0784 

• FORTRAN 0785 
SUBROUTINE SPLIT 0786 

C STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM 0787 
M=100-KZ2 0788 
DO 30 J=I.M 0789 
K=IOI-J 0790 
RCK)=RCK-l) 0791 
DRCK)=DReK-l) 0792 
RRCK)=RRCK-l) 0793 
RHOzeK)=RHOZeK-l) 0794 
RZCK)=RZeK-l) 0795 
R2CK)=R2CK-l) 0796 
UCK)=UCK-I) 0797 
RRCK)=RReK-l) 0798 
TRCK)=TReK-l) 0799 
VCK)=VCK-l) 0800 
PCK)=PCK-l) 0801 
ZMASCK)=ZMASCK-l) 0802 
QCK)=QCK-l) 0803 
TCK)=TCK-I) 0804 
ECK)=ECK-I) 0805 
DIVFACK)=DIVFACK-l) 0806 
URCK)=URCK-1) 0807 

30 CONTINUE 0808 
C ADD ZONE JUST OUTSIDE K=KZ2 0809 

ZHASCKZ2)=ZHASCKZ2)/2.0 0810 
ZMASCKZ2+1)=ZMASCKZ2) 0811 

V(KZ2+1)=V(KZ2) 0812 
RHOZCKZ2+11=RHOZCKZ2) 0813 
R(KZ2)=CCRCKZ2+1) •• J)-CJ.0.ZMASCKZ2+1). V(KZ2+1») •• CI.0/3.0) 0814 
RZCKZ2)=CCRZ(KZ2+1) •• J)-CJ.0.ZHASeKZ2+1)/RHOZeKZ2+1») •• el.O/J.O) 0815 
RRCKZ2)=RCKZ2)/RZCKZ2) 0816 
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QRCKZ2+1)=RCKZ2+1)-RCKZ2) 0817 
ORCKZ2)=RCKZ21-RCKZ2-1) 0818 
R2CKl2)=RCKZ2) •• 2 0819 
UCKZ2)=CC(UCKZ2-1)"2)+CUCKZ2+1) •• 21)/2.0).'0.S 0820 
TRCKZ2+11=TR(KZ2) 0821 
PCKl2+tl=P(KZ2) 0822 
QCKZ2+11=Q(KZ2) 0823 
TCKZ2+11=0.9tTCKl21 0824 
T(KZ21=1.ltTCKZ21 0825 
ECKZ2+11=O.8S.ECKZ21 0826 
ECKZ2)=1.lS'ECKZ2) 0827 
DIVFACKZ2+1)=DIVFACKZ2) 0828 
URCKZ21=O.5tCURCKZ2-tl+URCKZ2+1» 0829 
RETURN 0830 
ENO 0831 

• FORTRAN 0832 
CFtCGSPO CGS PRINT OUT PACKAGE FIRE 1 0833 

SU8ROUTINE CGSPO 0834 
C STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM 0835 
45 FORMAT(lH11139H AT COMPLETION OF MASTER CYCLE NUM8ER 14.25X.15. 0836 
45 240X.3HSE=OPFIO.3116H TIME=IPEIO.3.21X.6HPOWER=lPEIO.3.2X.5HWATTS. 0837 
45 3t3X.tOHTIME STEP=lPEI0.3.20X.14HPASSES ENG Ea 141/ 0838 
45 43H K.2X.6HRADIUS.5X.8HPART VEL.2X.4HPRES.6X.3Ha/P.3X.3HTEV.4X.3HR 0839 
45 5HO.7X.3HE/G.7X.4HFOUT.5X.5HFI/FO.2X.4HDIVF.5X.4HTEMP.4X.5HGAMMA. 0840 
45 6X.4HPART.X.1HC.2X.3HTAU.5X.4HDTAUIICI4.1PE10.3.1P2EIO.2.0P2F6.2. 0841 
4S 71P3EIO.2.0PF6.2.1P2EIO.2.0PFS.2.0PF6.2.IAI.OPF7.2.1Al.lPE9.2)) 0842 
46 FORMATCtH IBH T PART=lPE12;4.9H FRACT .5X.6HDTHYD=IPE12.4.BH SEC 0843 
46 tS .5X.6HPOW03=lPEI2.4.BH WATTS .5X.5HTEFF=OPF6. O.BH DEG K .5X. 0844 
46 24HLZR=14/BH TYIELD=lPEI2.4·9H ERGS .5X.6HDTRAD=IPEI2.4.8H SEes 0845 
46 3 .5X.6HPOW34=IPE12.4.BH W,\TTS .5X.5HTCOL=OPF6.0.BH DEG K .5X. 0846 
46 44HNCW=14/BH IN ENG=IPE12.4.9H ERGS .5X.6HDTMIN=IPEI2.4.8H SEes 0847 
46 5 .5X.6HPOW45=IPEt2.4.BH WATTS .5X.5HWLMX=OPF6.0.BH ANG .5X. 0848 
46 64H~Dt=14/BH KN ENG=IPEI2.4.9H ERGS .5X.6HDTLST=IPEI2.4.BH SECS 0849 
46 7 .5X.6HPOW57=IPEt2.4.BH WATTS .5X.5HTY4t=OPF7.2. 7HKT .5X. 0850 
46 B.4HE't1S=OPFS,4) 0851 
36 FORHATCBH TOT ES=IPEt2.4.9H ERGS 5X.6HFBRAD=tPEI2.4.8H eM 0852 
36 25X.6HPOW71=lPEI2.4.BH WATTS .5X.5HTY71=OPF7.2. 7HKT .5X. 0853 
36 34HNSZ=14/BH E AMBT=IPE12.4.9H ERGS 5X.6HSHRAD=IPEI2.4.BH CM 0854 
36 4 .5X.6HPOW47=IPE12.4.8H WATTS .5X.5HTY47=OPF7.2. 7HKT .5X. 0855 
36 S6HD15B9-121 0856 
47 FORMAT(lHlll. 0857 
47 43H K.2X.6HRADIUS.5X.BHPART VEL.2X.4HPRES.6X.3HQ/P.3X.3HTEV.4X.3HR 0858 
47 SHO.7X.3HE/G.7X.4HFOUT.5X.5HFI/FO.2X.4HDIVF.5X.4HTEMP.4X.5HGAHMA. 0859 
47 6X.4HPART.X.IHC.2X.3HTAU.SX.4HDTAUIICI4.1PE10.3.1P2E10.2.0P2F6.2. 0860 
47 71P3E10.2.0PF6.2.1P2E10.2.0PF5.2.0PFS.2.1Al.OPF7.2.1Al.lPE9.21) 0861 

YIELD=EQUAL 0862 
00 1000 K=4.LZ 0863 
IFCTCK-l)-O.StTOOl 1002.1002.1000 0864 

1 002 I(Z2= 0 OB6~ 
CALL 0 I AGN$ ... ~.-: 

1 auu CONT lNUEmf''l 
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C 

1059 

1060 
1061 
1062 
1064 
1063 
1065 
1065 
1067 
1068 
1164 
1165 
1165 
1167 
1168 
1264 
1265 
1265 
1267 
1268 
1364 
1365 
1365 
1367 
1368 
1464 
1465 
1465 
1467 
1468 
1564 
1565 
1565 

RSHOCK=O.O 
SAVE1=DT 
DT=CNCLZ) 
STX=PCLZ) 
POWER=TFLUX.l.0E-07 
TCOL=CTFLUX/( EMS .12.56.5.67E-05.(FBR •• 2))) •• 0.25 
TEFF=(TFLUX/(12.56.5.67E-OS·CFBR •• 2))) •• 0.25 
CALL PHOTOG 

ESTIMATE OF OBSERVED SPECTRAL DISTRIBUTION 
IF(FBR) 1059.1059.1061 
P47=0.37.POWER 
047=047+P47.(TIME-TIMES)/4.186E+12 
041=0.0 
P03=0.0 
P34=0.0 
P45=0.0 
P57=0.0 
P71=0.0 
071=0.0 
GO TO 1600 
SAVE T = T( MCP) 
T( MCP) = TCOL 
IF( T(MCP)tCWLM -2.0E+08) 1065.1065.1068 
CWLM=CWL( NCW. 1 ) 
FLM = EXPF((-3.41E-08tCWLM • T(MCP)+2.5E-25.((CWLM t T(MCP))tt3) 

l)tEXPF(-3.07E+13/((CWLM • T(MCP))t.I.B))) 
GO TO 1164 
FLM =7.6IE+22/((CWLM tT(M('P)) .. 3) 
IF( T(MCP)t3000.0-2.0E+08) 1165.1165.1168 
F3 = EXPF((-3.41E-08e3000.0t T(MCP)+2.5E-25t((3000.0t T(MCP))"3J 

1).EXPF(-3.07E+13/((3000.0t T(MCP))'.1.8))) 
GO TO 1264 
F3 =7.6IE+22/((3000.0.T(MCP))t.3) 
IFC TCMCP)t4000.0-2.0E+08) 1265.1265.1268 
F4 = EXPF((-3.4IE-08t4000.0' T(MCP)+2.5E-25t((4000.0. T(MCP)) •• 3) 

1)'EXPF(-3.07E+13/((4000.0. T(MCP)).tl.8))) 
GO TO 1364 
F4 =7.61E+22/(C4000.0.T(MCP)).t3) 
IF( TCMCP).5000.0-2.0E+08) 1365.1365.1368 
F5 = EXPF((-3.41E-08.5000.0. T(MCP)+2.5E-25t((5000.0. T(MCP)).t3) 

l)tEXPF(-3.07E+13/(C5000.0t T(MCP))t.I.8))) 
GO TO 1464 
F5 =7.61E+22/((5000.0.T(MCP))tt3) 
IF( TCMCP)t7000.0-2.0E+08) 1465.1465.1468 
F7 = EXPF((-3.41E-08.7000.0. T(MCP)+2.5E-25.((7000.0t T(MCP))t.3) 

l)tEXPF(-3.07E+13/(C7000.0. TCMCP)) •• 1.8))) 
GO TO 1564 
F7 =7.61E+22/((7000.0.TCMCP)) •• 31 
IF( T(MCP).10000.0-2.0E+08) 1565.1565.1568 
FI= EXPF((-3.41E-08.10000.0tT(MCP)+2.5E-25.((10000.Ot T(MCP)).t3) 

1).EXPF(-3.07E+13/((10000.0. T(MCP)) •• 1.8))) 
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0868 
0869 
0870 
0871 
0872 
0873 
0874 
0875 
0876 
0877 
0878 
0879 
0880 
0881 
0882 
0883 
0884 
0885 
0886 
0887 
0888 
0889 
0890 
0891 
0892 
0893 
0894 
0895 
0896 
0897 
0898 
0899 
0900 
0901 
0902 
0903 
0904 
0905 
0906 
0907 
0908 
0909 
0910 
0911 
0912 
0913 
0914 
0915 
0916 
0917 
0918 



1567 
1568 
1580 

1581 
1582 
1583 
1584 
1585 
1586 
1587 
1588 
1589 
15S0 
15S1 

1600 

B 

488 

489 
490 

491 
492 

493 

GO TO 1580 
FI =7.6IE+22/CCI0000.0.TCMCP)) •• 3) 
CONT INUE 
TCMCP)=SAVET 
IFCCWLM-3000.0) 1583.1583.1582 
F3=FLM 
IFCCVLM-4000.0) 1585.1585.1584 
F4=FLM 
IFCCWLM-5000.0) 1587.1587.1586 
F5=FU1 
IFCCWLH-7000.0) 1589.1589.1588 
F7=FLM 
IFCCWLM-IOOOO.O) 1591.1591.1590 
FI=FlH . 
CONTINUE 
P03=POVER*CFLH-F3)/FLH 
P34=POVER*CF3-F4)/FlM 
P45=POVER*CF4-F5)/FLH 
P57=POVER*CF5-F7)/FLH 
P71=POWER.CF7-Fl)/FLH 
P47=POVER*CF4-F71/FLH 
071=071+P71*CTIME-TIMESl/4.186E+12 
047=047+P47*CTIME-TIHES)/4.186E+12 
041=047+071 

ENC 1 )=4. 189.CRC 1 )"31.CEC 1 )/VC 1 1 ) 
BNCI)=ENCI) 
CNC 1 )=3. 14159.CUC I ) .. 2hZHASC 1 1 
ONCI1=CNCI) 
OPPCl)=BNCI)+ONCI1 
00 490 K=2.lZ 
ENCK1=4.18S*CCRCK) •• 3)-CRCK-l) •• 3)).CECK)/VCK)) 
CNCK)=3.1415S.CUCK) •• 2+UCK-I)·.2).ZHASCK) 
BNCK)=BNCK-l1+ENCK) 
ONCK1=ONCK-11+CNCK1 
THETACK)=212121212121 
IFCOCK)-STX) 490.490.488 
STX=OCK) 
J3=K-3 
RSHOCK=RCK) 
OPPCK)=BNCK)+ONCK) 
EAMB=4.189.CRClZ) •• 3).EC99)/VC99) 
ESYSM=OPPClZ)-EAMB 
ETOTAL=ESYSM/4.1B6E+19 
PARTT=FLEX/YIElO 
IF(NMC) 493.492.493 
YIElO=ESYSM 
EQUAL=YIELD 
CONT IHUE 
WRITE OUTPUT TAPE22.495.NR.NMC.TIME.EAHB.NCW.HCP.OPPCNCW).OPPCHCP) 

1.TRCHCV).TRCMCP).CK.ENCK).8NCK).CNCK).ONCK).OPPCK).ACK. 1).ZOCK. I). 
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0919 
0920 
0921 
0922 
0923 
0924 
0925 
0926 
0927 
0928 
0929 
0930 
0931 
0932 
0933 
0934 
0935 
0936 
0937 
0938 
0939 
0940 
0941 
0942 
0943 
0944 
0945 
0946 
0947 
0948 
0949 
0950 
0951 
0952 
0953 
0954 
0955 
0956 
0957 
0958 
0959 
0960 
0961 
0962 
0963 
0964 
0965 
0966 
0967 
0968 
0969 



495 
49S 
495 
49S 
-t95 
8494 
8 

828 
29 

496 
80 
81 
81 
81 
82 
92 
82 
83 
30 
30 
30 
85 
85 

-too 

2ZICK.I).TRCK).K=I.LZ) 
FORMATCIHI. 13H ENERGY CHECK.IOX.4HRUN=I-t.SX.4HNMC=14.SX.SHTIME=IPE 

210.3.SX.6HE AM8=IPEIO.31ISH NCW=14.SX.4HMCP=14.SX.9HDPPCNCW)=IPEI2 
3.4.SX. 9HDPPCMCP)=IPEI2.4.SX,8HTRCNCW)=IPEIO.3.SX,9HTRCMCP)=1PEtO 
4.311SH ZONE.3X.2HDE.IOX.4HSUME.6X.3HDKE.7X.SHSUMKE.SX.9HSUMTOTALE. 
SllX. IHA. II X. 2HZO. lOX. 2HZ I. lOX. 2HTRIIC IS. IPSEI2. 4, 3X. IP-tEI2. 4)) 

THETAC I 1=646464646464 
THETAC21=232323232323 
DO 29 K=l.LZ 
HZ(K1=DTAUCK,11/l.S 
DMMCK1=OTAUCK.I1/CRCK1-RCK-l11 
FZCK1=4.28 E-09.(ECK1+P(K1.VCK1) 
OZCK)=TAUCK,I)/l.S 
OPCK)=QCKJ/PCK) 
FMCK)=TCK)/11606.5 
HPCK)=FOSCK).I.OE-07 
HPPCK)=A8SFCFISCK)/FOSCK)) 
GMCK)=1.0+CPCK).VCK1/ECK11 
URCK1=1.0/VCK1 
IFCPART(K)-4.0) 29,28.29 
OTHCK)=3131313t3131 
CONTINUE < 

SHVEL=UCJ31.(1.0+GMCJ3))/2.0 
PSHK= C 2. O/C GMC J3) + 1.0) J .RH"ZC LZl. C SHVEL .. 2) 
ESHK=0.S-CC2.0-SHVEL/Cl.0+GMCJ3»))-·2) 
TRSHK=TCJ3J-ESHK/E(J3) 
ETOE=CS.67E-OS-CTRSHK.-4)/lRHOZCLZ).SHVEL»)+ECLZ) 
TTOE=ETOE-TCLZ)/ECLZ) 
POWSK=12.S6·CRCJ3+2)·-2).S.67E-OS-(TRSHK-.4J-FLM 
WRITE OUTPUT TAPE 6,496,NR.NMC,TIME,SHVEL.PSHK.TRSHK.TTOE 
PUNCH 496. NR.NMC.TIME,SHVEL.PSHK.TRSHK.TTOE 
FORMATC214,lPSEI2.4) 
IF(LZ-401 30.30.81 
WRITE OUTPUT TAPE NTAPE.4S.NMC.LZ.ETOTAL.TIME.POWER.DT.NTI. 

I C K. RC K). UC K). PC K) • OPC K). FMC K). URC K). E C K). HP e K J • HPPC K) • 0 I VF AC K J • T C K 
2).GMCKJ.PARTCK).THETAeKJ.DZCKJ.DTH(K).HzeK).K=I.40) 

WRITE OUTPUT TAPE NTAPE.47, 
ICK,RCK),UCK),PCK),OPCK),FMCK),URCK),ECK),HPCK),HPPCK),OIVFACKJ.TCK 
2),GMCK),PARTCK),THETACK),OZ(K),DTH(K),HZCK),K=41,LZ) 

GO TO 85 
WRITE OUTPUT TAPE NTAPE,4S.NMC,LZ,ETOTAL,TIME.POWER.DT,NTI, 

ICK.RCK).ueK).PCK).DPCK).FM(K).URCK).ECK).HPCK).HPPCK).DIVFACK).T(K 
2).GMCK).PART(K).THETACK).DZCK).DTH(K),HZ(K).K=I.LZ) 

WRITE OUTPUT TAPE NTAPE.46.PARTT.RJ.P03,TEFF.LZR.FLEX,RX,P34.TCOL. 
2NCW.8NCLZ).DTMIN.P45.CWLCNCW.I).MCP.DNCLZ).SAVEI.PS7.Q41.EMS 

WRITE OUTPUT TAPE NTAPE.36.DPPCLZ).FBR.P71,Q71.NSZ,EAM8.RSHOCK.P47 
I.Q47.NR 
WCl.9)=RSHOCK 
DT=SAVEI 
IFCNMC-I) 403.400.400 
IF C NMC -10) 411 .411.403 
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0970 
0971 
0972 
0973 
0974 
0975 
0976 
0977 
0978 
0979 
0980 
0981 
0982 
0983 
0984 
0985 
0986 
0987 
0988 
0989 
0990 
0991 
0992 
0993 
0994 
0995 
0996 
0997 
0998 
0999 
1000 
1001 
1002 
1003 
1004 
1005 
1006 
1007 
1008 
1009 
1010 
1011 
1012 
1013 
1014 
1015 
1016 
lOt 7 
1018 
1019 
1020 



403 CONTINUE 1021 
C USER TAPE PRINT OUT 1022 

~RITE OUTPUT TAPE 32.300.N~.NHC.TIHE.LZ.P(99).TC99).RHOZC99).POWER 1023 
2.P47.FBR.CK.RCK).UCK).P(K).~RCK).T(K).FOSCK).FISCK).DHMCK1.O(K). 1024 
3FZCK1.ECK).HPPPCK1.K=I.LZl 1025 

300 FORHAT(IHI.2I4. IPEI2.3.15.IP6EI2~3/CI4.IPI2EIO.3)) 1026 
.WRITE OUTPUT TAPE 42.437.NR.NHC.TIHE.TCI).TCOL.TEFF.ETOTAL.PARTT. 1027 
IBNCLZ).DNCLZ).ESYSH.EAHB.FLEX.041.Q47.071.P03.P34.P45.P57.P71.P47. 1028 
2FBR.RSHOCK 1029 

437 FORMATCIH .2I4.IPIOEll.3/1PI2El1.4111) 1030 
410 IFCNMC) 500.420.411 1031 
411 IFCTIHE-6.82E-OS) SOO.412.412 1032 
412 NSIX=NSIX+l 1033 
413 IF(NSIX-3) 500.420.500 1034 
420 NSIX=O 1035 
421 CALL SIXDPO 1036 
500 RETURN 1037 

END 1038 
• FORTRAN 1039 
CF1SIXD 1040 

SUBROUTINE SIXDPO 1041 
C STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM 1042 

FLAG=I.0E+31 1043 
SOUNDS=SCRTFC1.4.P(99)/RHOZC99)) 1044 
00 10 K=I.LZ 1045 
BN(K)=PCKJ/P(99) 1046 
CNCK)=VC99)/VCK) 1047 
DNCK)=TCKJ/T(99J 1048 
ENCK1=UCKJ/SOUNDS 1049 

C AVERAGE ZONE RADIUS IN FEET 1050 
10 DPCK)=CRCK)+RCK-I))/60.96 1051 

WRITE TAPE 31.NR.TIME.LZ.CDP(K).BNCK).CNCK).DNCK1.ENCKJ.GMCK). 1052 
IK=I.LZ).FLAG 1053 

WRITE OUTPUT TAPE 41.50.NR.TIME.LZ.CDPCK).BNCK).CNCK).DNCK).ENCK). 1054 
IGMCK).K=I.LZ) . lOSS 

SO FORMATC1HI/14.X.27H SIXDPLOT DIAGNOSTICS TIME=IPE10.3.5X.3HLZ=14 1056 
SO 211IC1P6EI6.4)) 1057 

KZ6=KZ6+1 1058 
20 RETURN 1059 

END 1060 
• FORTRAN 1061 
CFIPHOTOG PHOTOGRAPHIC BRIGHTNESS ROUTINE 1062 

SUBROUTINE PHOTOG 1063 
C STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM 1064 

IFCNMC) 32.30.32 1065 
30 JTAPE=25 1066 
31 GO TO 40 1067 
32 IFCNHC- 3) 33.33.30 1068 
33 JTAPE=6 1069 
40 CONTINUE 1070 
C SOURCE FUNCTION EMCK) AND ABSORPTION COEFF BN(K) 1071 

149 



DO 5 K=I.LZ 
BNCK)=CVCK)/C 

16.S.(CI.293E-03.VCK)) •• I.I~)/(CCT(K)/11606.S) •• B.0)+2.6E-12.V(K») 
2+0. 180.(Cl.293E-03.VCK)) •• 1.91)/CCTCK)/11606.S) •• C3.S)) 
4+6.00E-OS.CCI.293E-03.V(K)) •• 2.0).CCTCK)/11606.S) •• 0.59) 
S+I.00E-09.CCI.293E-03.VCK)) •• 2.0).CCTCK)/11606.S) •• 4.00))) 
6.CI.0-EXPFC-3.2E+04/TCK»)) 

TEA=3.9S6E+04/TCK) 
IF( TEA-80. 0) I. 1.2 

2 EI'1CK)=O.O 
3 GO TO 5 
I EI'1CK)=I.OE+OS/CEXPF(3.9S6E+04/T(K))-1.0) 
5 CONT INUE 

C OPTICAL DEPTHS 
DO 200 K= I. LZ 
DI'1CK)=O.O 
DZeK)=O.O 
DPCK)=CRCK)+RCK-I))/2.0 
LS=K 
DO 100 L=LS.LZ 

300 IFCL-K) 320.310.320 
310 DZCL)=SQRTFCRCL) •• 2-DPCK).*2) 
311 DI'1CL)=DZCL) 
31 3 GO TO I 00 
320 DZCL)=SQRTFCRCL)*.2-DPCK) •• 2)-DI'1CL-l) 
324 DI'1(L)=DI'1CL-l)+DZCL) 
100 HZCL)=EXPFC-BNCL).DZCL)/VCL)) 
C BRIGHTNESS INTEGRATION 

HPCLZ)=O.O 
LS=LZ-K+l 
DO 7 J= 1. LS 
I'1=LZ-J 

7 HP(I'1)=HPCI'1+1).HZCI'1+1)+Cl.0-HZCI'1+1)).EI'1CM+l) 
LS=K 
DO 6 J=LS.LZ 

6 HPCJJ=HPCJ-I).HZCJ)+CI.O-HZCJ)).EI'1CJ) 
HPPCK)=HP(LZ) 
(F(K-3) 155.150.155 

150 HNORI'1=HPPC3J 
IFCNMC) 155.151.155 

151 SCALE=HPP(3).10.0 
155 CONTINUE 
199 HPPPCK)=HPPCKJ/SCALE 
200 HPPCK)=HPP(KJ/HNORI'1 
210 WRITE OUTPUT TAPE JTAPE.201.NMC.TII'1E.CK.DPCK).HPPPCK).HPP(K).K=I. 
210 ILZ) 
201 FORI'1ATCIHI.6HPHOTOG. (4.IOX.5HTIME=IPEIO.31ISH ZONE.3X.6HI'1EAN R.4X. 
201 25HABS B.SX.5HREL BIICI6.1P3EIO.3)) 
280 RETURN 

END 
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• FORTRAN 1123 
CFIDIAG 1124 

SUBROUTINE OIAGNS 1125 
C STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM 1126 
35 FORMATCIHI.4HNMC=I4.5X.4HNTI=I4.5X.4HKZ2=15.5X.5HZONE=14.5X.4HRUN= 1127 

214/) 1128 
M=KZ5 1129 
IF(KZ2) 5.10.15 1130 

5 WRITE OUTPUT TAPE S.S.KZ2 1131 
S FORMATC1HI.2IHOIAG CALLED FROM MAINI5) 1132 

GO TO 20 1133 
10 WRITE OUTPUT TAPE S.ll.KZ2 1134 
II FORMATCIHI.22HDIAG CALLED FROM CGSPOI5) 1135 

GO TO 20 1136 
15 WRITE OUTPUT TAPE S.IS.KZ2 1137 
16 FORMAT(IHI.22HOIAG CALLEO FROM HYOROI5) 1138 
20 WRITE OUTPUT TAPE S.21.NMC.NTI.LZ.LZR.MCP.MCL.TIME.DT.CS.CR.BR.RS. 1139 
20 l(K.VCKl.VRCKl.ECK).ERCKl.RESDUECKl.PACKl.DIVFACKl.DIVFR(Kl.K=I.LZ) 1140 
21 FORMATCIH .4HNMC=I4.2X.4HNTI=14.2X.3HLZ=14.2X.4HLZR=14.2X.4HMCP=14 1141 
21 1.2X.4HMCL=14/SH TIME=IPEI2.4.2X.3HDT=IPEI2.4.2X.3HCS=OPF5.2.2X. 1142 
21 23HCR=OPF5.2.2X.3H8R=OPF5.2.2X.3HRS=OPF5.2113H K.6X.IHV.13X.2HVR. 1143 
21 312X.IHE.13X.2HER.12X.SHRESDUE.8X.2HPA.12X.5HOIVFA.9X.5HOIVFRII 1144 
21 4 ( I 4. 1 P8E 1 4 . 7 ) ) 1 I 45 
22 WRITE OUTPUT TAPE 6.23.NMC.NTI.OTMIN.YIELO.SCALE.TFLUX.FBR.TIMEW. 1146 
22 I(K.TCK).OTMCKl.OETCK).OPTCK).8NCKl.CNCK).ONCK).ENCK).K=I.LZ) 1147 
23 FORMATCIHl.4HNMC=14.2x.4HNTI=I4.2X.SHOTMIN=IPE12.4.2X.6HYIELO=IPEI 1148 
23 12.4.2X.SHSCALE=lPE12.4.2X/7H TFLUX=lPEI2.4.2X.4HFBR=IPEI2.4.2X.6HT 1149 
23 2IMEW=IPEI2.4113H K.SX.1HT.13X.3HOTM.IIX.3HOET.IIX.3HOPT.I1X.2HBN. 1150 
23 312X.2HCN.12X.2HON.12X.2HENIICI4.1PBEI4.7)) 1151 

WRITE OUTPUT TAPE 6.35.NMC.NTI.KZ2.M.NR 1152 
24 WRITE OUTPUT TAPE 6.25.CK.FOS(K).FISCKl.BBCK.l).BCCK.I).RCK). 1153 
24 lZ0CK.1).A(K.ll.ZI(K.l ).K=I.LZ) 1154 
25 FORMAT(IH 13H K.6X.2HFO.12X.2HFI.12X.2HBB.12X.2HBC.12X.IHR.13X. 1155 
25 12HZO.12X.IHA.13X.2HZI/CI4.1P8E14.7)) 1156 

WRITE OUTPUT TAPE 6.35.NMC.NTI.KZ2.M.NR 1157 
26 WRITE OUTPUT TAPE S.27.CK.SCK.l).WCK.l).OTAUCK.ll.R2(K). ZMASCKJ. 1158 
26 ITAUCK.I).CWLCK.ll.TRCKl.K=I.LZl 1159 
27 FORMATCIH 13H K.SX.lHS.13X.lHW. 13X.4HOTAU. 10X.2HR2.12X.4HZMAS. lOX 1160 
27 1.3HTAU.l1X.3HCWL.IIX.2HTR/CI4.1P8EI4.7)) 1161 

WRITE OUTPUT TAPE S.35.NMC.NTI.KZ2.M.NR 1162 
28 WRITE OUTPUT TAPE S.29.CK.OMMCK).OMCK).OZ(K).OPCK).OPPCK).QCK). 1163 
28 lFOCK.2).FICK.2l.K=I.LZ) 1164 
29 FORMATCIH 13H K.SX.3HOMM.IIX.2HOM.12X.2HOZ.12X.2HOP.12X.3HOPP.IIX 1165 
29 1. IHQ.13X.5HFOTJZ.9X.5HFITJZ/CI4.IP8EI4.7)l 1166 

WRITE OUTPUT TAPE S.35.NMC.NTI.KZ2.M.NR 1167 
30 WRITE OUTPUT TAPE 6.31.(K.FMM(K).FMCK).FZCK).HZ(K).FPCK).HP(K). 1168 
30 IHPP(K).HPPPCK).K=I.LZ) 1169 
31 FORMAT(IH 13H K.6X.3HFMM. IIX.2HFM. 12X.2HFZ. 12X.2HHZ. 12x.2HFP. 12X. 1170 
31 12HHP. 12X.3HHPP.llX.4HHPPP/CI4. IP8E14.7)) 1171 

WRITE OUTPUT TAPE 6.35.NMC.NTI.KZ2.M.NR 1172 
32 WRITE OUTPUT TAPE 6.33.TDN2.TD02.TIMES.Q47.Q71.FLIX.FLOX.FLEX. 1173 

lSI 



32 lRH.RX.RJ. CK.FOCK.3).DTRClO.RZClO.PClO.DECK).RRClO.RHOZ(lO. UCK). 1174 
32 2K=1.100) 1175 
33 FORHATCIH .2X.SHTDN2=IPEI2.4.2X.SHTD02=IPEI2.4.2X.6HTIMES=IPEI2.4. 1176 
33 12X.4HQ47=IPEI2.4.2X.4HQ71=lPE12.~.2X/6H FL1X=IPE12.4.2X.5HFLOX=IPE 1177 
33 212.4.2X.SHFLEX=IPE12.4.2X.3HRH=IPE12.4.2X.3HRX=IPEI2.4.2X.3HRJ=IPE 1178 
33 312.4113H K.6X.3HDTH.1IX.3HDTR.11X.2HRZ.12X.1HP.13X.2HDE.12X.2HRR. 1179 
33 412X.4HRHOZ.I0X.2HU ICI4.1P8E14.7» 1180 

RETURN 1181 
END 1182 

- FORTRAN 1183 
CFIFLUX 1184 

SUBROUTINE FLUXS 1185 
C STANDARD DIMENSION AND COHMON STATEMENTS AS IN MAIN PROGRAM 1186 
500 LZMI=LZ-l 1187 

00 530 N=I.NSZ 1188 
C BOUNDARY CONDITION NO INWARD FLUX AT OUTER BOUNDARY 1189 

FICLZ.N)=O.O 1190 
510 DO 512 J=I.LZMl 1191 
511 K=LZ-J 1192 
512 FICK.N)=FICK+l.N)-ZICK+I.N)+BBCK.I)-CACK+I.N»-2.0.SCK.N)-WCK+ 1193 
512 I I • N) 1 194 
520 FOCI.N)=FICI.N).Z(CI.N)+BBC1.2).CACI.N»+2.0.SCI.N)*WCI.N) 1195 
522 00 525 K=2.LZ 1196 
525 FOCK.N)=FOCK-I.N).CR2CK-I)/R2CK».ZOCK.N) 1197 
525 2+BBCK.2).CACK.N»+2.0.S(K.N).WCK.N) 1198 
525 3+CI.0-CR2CK-l)/R2CK»).FICK.N).ZICK.N) 1199 
530 CONTINUE 1200 
549 00555 K=I.LZ 1201 

FISCK)=O.O 1202 
FOSCKJ=O.O 1203 
00 550 N=I.NSZ 1204 
FISCK)=FISCK)+FICK.N) 1205 

550 FOSCK) =FOSCK) +FOCK. N) 1206 
551 tF(K-l) 552.552.554 1207 
552 01=0.0 1208 
553 GO TO 555 1209 
554 01=1.0 1210 
555 0IVFA(K)=CR2CK)/ZMAS(K»*CFOSCK)-FISCK» 1211 
555 I-Ol-(R2CK-l)/ZHASCK».CFOSCK-l)-FISCK-l» 1212 
541 FLOX=12.56-R2CLZ-3)-FOSCLZ-3) 1213 
590 RETURN 1214 
591 END 1215 

1216 
• FORTRAN 1217 
CFJSTE 1218 

SUBROUTINE STATE 1219 
C STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM 1220 

1221 
C STEFAN =2.S14E-09 TO INCLUDE RADIATION ENERGY AND PRESSURE 1222 
C STEFAN =0.00 TO DELETE RADIATION ENERGY AND PRESSURE 1223 

STEFAN=O.O 1224 
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100 DO 126 K=I.LZ 1225 
101 ETACK)=1.0/Cl.293E-03' VCK» 1226 
102 TseKl=TseK)'I.OE-04 1227 
103 XSCK1=1.0E+04.TSCK)/( ETACK)'.0.086) 1228 
104 GNUeK)=LOGFeXSeK)/2000. O)/LOGFCI250. 0) 1229 
lOS IF(XS(K)-2000.0) 106.106.109 1230 
106 PART(K)=1.0 1231 
107 GO TO 1 12 1232 
109 IFCXS(K)-2.5E+06) 109.111.111 1233 
109 PART(K)=1.0+15.4'( GNUCK)"3)'C4.0-3.0' GNU(K» 1234 
110 GO TO 112 1235 
III PART(K)=16.4 1236 
112 PCK)= (2.881.(TS(K)1 VCK»' PART(K)+STEFAN.(TS(K)"4».1.0E+10 1237 
113 Y=0.0794/C2.881.TSCK)' PARTCK» 1238 
114 UZ=I.0+C27.0'Y+3.0)/(5.0'Y+I.0)+961.0'Cl.0-Y)'V/(3000.0,(v'.2)+1.0 1239 
114 1)+C2356.0.Cl.0-Y)'V)/C9.0E+04,CY"2)+1.0)+C 41000.0'(1.0-V).V)1 1240 
114 2CI2.0E+06'CV"2)+1.0)+C2.15E+05'Cl.0-V).Y)/C1.5E+18'(V"4)+1.0) 1241 
115 UT=C24.0,CY"2)+4.0E-I0)/C4 .• (V •• 2)+I.E-I0)-CO.0970.CV"2)'C1.0-V) 1242 
115 1)/C2.0E-06+Vu3)+C4.19E-05HVu3).CI.0-V»/(I.14E-11+vu6) 1243 
116 UC=UZ-0.09'(UZ-UT)'LOGFC ETACK» 1244 
117 E(K)= (0.03920.(UC-l.0)/V+3.0'STEFAN.(TS(K) •• 4)' V(K».1.0E+10 1245 
126 TS(K)=TS(K).1.0E+04 1246 

TS(2)=TS(2)'1.0E-04 1247 
TS(I)=TSCI).1.0E-04 1248 
P(I)=CO.538E+10.TS(I)"1.5)/Y(I) 1249 
ECI)=2.53E+l0'(((Y(I)"0.25)+10.0)/(3.0'Y(1)"0.5+10.0». 1250 

I(CV(I)"0.25)+0.13).(TS(I)"1.5+.02722/V(I)"1.5) 1251 
P(2)=36.18.TS(2).1.0E+I0.(920.0+TS(2).'2)/(V(2).(TS(2)"2+1.08E+04 1252 

I» 1253 
E(2)=((649.0+TS(2)"2)/(100.0+TS(2») 1254 

I.CC82.7.TS(2)'I.OE+I0)/(116.0/CV(2)'.0.25)+TS(2)'(1.0+0.12/(V(2) •• 1255 
20.25»» 1256 

TS(I)=TS(I).1.0E+04 1257 
TS(2)=TSC2)'1.0E+04 1258 

176 RETURN 1259 
177 END 1260 
• FORTRAN 1261 
CFIHYDO 1262 

SUBROUTINE HVDRe 1263 
C STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM 1264 

1265 
KHR=O 1266 
KRS=1 1267 
KZ4=0 1268 

C TEST FOR IMPROPER CONVERGENCE 1269 
DO 195 K=I.LZ 1270 
IFCDTMCK» 192.195.191 1271 

191 IFCTCK)-2.0E+05) 188.188.189 1272 
198 IFCABSFCDTMCK»-4.99.TCK» 195.195.193 1273 
199 IFCABSFCDTM(K»-0.80.TCK» 195.195.193 1274 
192 IFCABSFCDTMCK»-O.25.TCK» 195.195.193 1275 
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193 KZ2=193 1276 
RQX=RQX.0.2 1277 
RH=RQX.I.3 1278 
CALL OIAGNS 1279 

194 GO TO 198 1280 
195 CONTINUE 1281 
198 IF(RQX) 199.199.200 1282 
199 RQX=DTMIN 1283 
C RICHTMYER VON NEUMANN HYDRODYNAMIC SCHEME 1284 
C ADVANCE VELOCITY - - CHOOSE TIME STEP 1285 
200 DO 207 K=I.LZ 1286 
201 "CK.31=UCKl 1287 
202 URCK1=UCKl J288 
203 UCK)= UCKl-2.0.CCR2CKl .DT1/(ZMASCK1+ZMASCK+ll»).CPCK+1)+Q(K+1J 1289 
2041-PCKJ-QCK» 1290 
206 IFCUCK)-1.0E+11) 207.210.210 1291 
207 CONTINUE 1292 
208 UCLZ1=0.0 1293 
209 GO TO 217 1294 
210 KZ2=210 1295 

CALL D I AGNS 1296 
213 GO TO 52 1297 
C HYDRODYNAMIC TIME STEP - - COURANT CRITERION 1298 
217 RM=RQX-1.3 1299 
218 IFCRM-0.070.TIMEJ 222.222.219 1300 
219 RM=0.070-TIME 1301 
222 DO 227· K=I.LZ 1302 
224 DTHCKJ=DRCK)/CRS.SQRTFCP(KJ/(VCK).CRHOZCK) •• 2)))) 1303 

DTH(K)=DTH(K)-C(RZCK1/RCK»).-2) 1304 
FOCK.3)=DTHCK) 1305 

225 IHRM-DTHCK1) 227.226.226 1306 
226 RM=DTHCKl 1307 

KZ4=K 1308 
227 .CONTINUE 1309 
228 RJ=RH 1310 

1311 
C RADIATION LIMITED TIME STEP 1312 
229 RX=RM 1313 
230 DO 242 K=KRS.LZ 1314 

IHK-l) 233.233.223 1315 
223 IFCRCK1-FBR) 231.231.233 1316 
231 AR=BR 1317 
232 GO TO 234 1318 
233 AR=BR.2.0 1319 
234 CONTINUE 1320 
235 DTRCK)=ABSFCAR-ECK)/DIVFACK») 1321 
238 IFCDTRCK1-OTMIN 1 242.242.239 1322 
239 IHOTRCK1-RXl 240.240.242 1323 
240 RX=DTRCK) 1324 
241 KZ4=K 1325 
242 CONTINUE 1326 
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243 RH=RX 
244 IFCRH-2.0eDT) 246.246.245 
245 Rt1=2.0eDT 
246 IFCRt1-DTHIN) 247.248.248 
247 Rt1=DTHIN 
248 RQX=RH 
249 IFC(TIHE+RM1-TIHEW1 252.252.250 
250 IFCNMC- 41 252.252.251 
251 RH=TIMEW-TIME 
252 DO 255 L=I.LZMI 
253 UACL1=CUCLl/2.01+CURCLl/2.0)+CUCL1.RMl/C2.0-0Tl-CURCL).RMl/C2.-0T) 
254 URCL1=CUCLl/2.0)+CURCLl/2.0l-CUCL).RM)/C2.0.DT)+CURCL).RM)/(2.-0T) 
255 UC U =UA( U 
256 DT=RM 
C ADVANCE RADIUS ALL L 
260 DO 263 L=I.LZ 

WCL.5)=RCU 
261 RCLl=RCL)+OT.UCL) 
262 RRCL)=RCL)/RZCL) 
263 R2CL)=RCL) •• 2 

00 269 K=2.LZ 
IFCCRCK)-RCK-l».,.0.15) 264.264.269 

264 KHR=KHR+I 
IFCKHR-3) 265.265.270 

265 KZ2=266 
266 CALL OIAGNS 

00 268 L=I.LZ 
UCU=WCL.3) 
RCU=WCL.5) 

268 CONTINUE 
RQX=DhO.2 
GO TO 200 

269 CONTINUE 
C ADVANCE SPECIFIC VOLUME 
270 V(1)=CCRCI)--3)/CRZ(I) •• 3»/RHOZC1) 
271 00 277 K=2.LZ 
273 VCK)=(I.O/RHOZCK))-CCCRCK)/ORCI)) •• 3)-CCRCK-I)/ORCIll- -3)1 
274 ICCCRZCK)/ORCI))-.3l-CCRZCK-I)/ORCI)) •• 3ll 
275 IFCVCK)-I.OE+20l 276.279.279 
276 IFCVCK)) 279.279.277 
277 CONTINUE 
278 GO TO 283 
279 KZ2=279 

CALL DIAGNS 
282 GO TO 52 
C ADVANCE ARTIFICAL VISCOSITY 
283 IFCNMC-NQS1 284.284.286 
284 VD=CS 
285 GO TO 287 
286 VD=CR 
287 00 295 K=I.LZ 
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IFeVCK1-VRCKll 293.2942.2942 
293 Q(Kl=CVD.CCZMASCK1/RCK1 •• 2) •• 21/(VCK)+VRCK1».CCCVCK1-VRCK»/DT) •• 

12) 
294 IFCQ(K)-1.0E+22) 2941.298.298 
2941 IFC QCK» 2942.295.295 
2942 Q(K)=O.O 
295 CON T I NUE 
296 QCLZ)=O.O 
297 RETURN 
298 KZ2=298 

CALL DIAGNS 
52 WRITE OUTPUT TAPE 6.43.Tel) 
43 FORMAT(IH .15HEXIT FROM HYDRO.5X.5HTCI1=IPEI3.6) 

T( I ) = 0.000000 
1500 GO TO 297 

END 

• FORTRAN 
CF1COEF 

SUBROUTINE COEFF 
C STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM 
700 LZR=LZR 
C SET FLUX DERIVATIVES NEAR OUTER BOUNDARY OF RADIATIVE REGION 
701 FP(LZR)=O.O 
702 HPCLZR)=O.O 
703 HPPCLZR)=O.O 
704 HPPPCLZR)=O.O 
705 HPP(LZR-Il=O.O 
706 HPPP(LZR-I)=O.O 
707 HPPP(LZR-21=0.0 

DO 769 J=I.LZR 
C SET RIPPLE ZONE PARAMETERS 

DO 514 N=I.NSZ 
SAVEI=BBeJ.N) 
SAVE2=BB( J -I. N) 
SAVE3=SCJ.N) 
SAVE4=SeJ-I.Nl 
SAVE5=DTAUCJ.N) 
SAVE6=AeJ.N) 
SAVE7=WCJ.N) 
SAVE8=Z IC J. N) 
SAVE9=ZI(J-I.Nl 
SAVE10=ZOCJ.Nl 
SAVEII=ZOCJ+I.N) 
SAVEI2=BCCJ.N) 
SA VE I 4 = T( J ) 
SAVEI3=TSeJl 
SAVE 1 5=CWL( J. 1 ) 
SAVEI6=ZOeJ+2.N) 
SAVEI7=BBCJ.2) 
SAVEIB=BBCJ-l.2l 
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311 BBCJ.Nl=CCCCCRCJ+I)-RCJl).TPCJl •• 4)+CCReJl-RCJ-I».T eJ+I) •• 4»1 1429 
311 lCRCJ+I)-ReJ-I»».S.67E-OS 1430 

BBCJ-l.Nl=CCCCCRCJ)-RCJ-I».TCJ-I) •• 4)+CCRCJ-I)-RCJ-2)).TPeJ) •• 4» 1431 
l/CReJ)-RCJ-2»l).S.67E-OS 1432 
B8CJ-l.2)=BBCJ-l.1) 1<433 
BBCJ.2)=BBeJ.I) 1434 

312 BCCJ.N)=S.67E-OS.eTPCJ) •• 4) 1435 
TSCJ)=TPCJ)/11606.5 1436 
TeJ)=TPCJ) 1437 
ETACJ)=1.293E-03.VCJ) 1438 
ALPHA=9.0+EXPFC-TIME/I.OE-03.CETACJ) •• 2» 1439 
8ETA=CC6.0E-18.VCJ» •• 0.5)'CTSCJ) •• 0.1) 1440 

300 ZICJ.I)=EXPFC-I.5.CRCJ)-RCJ-I» ICCETACJ) •• 1.5)/CCTSCJ) •• ALPHA) 1441 
300 2+BETA) +0.2.CETACJ) •• 1.91)/CTSCJ) •• 2.73) 1442 
300 3+0.023.CETACJ) •• 1.8).CTSCJ) •• 0.25)+I.OE-07.CETACJ) •• 2 .0)1 1443 
300 4CCTSCJ) •• C-5.0»+4.0E-14.VCJ»1) 1444 

ZICJ.I)=ZICJ.l1.0.99999998 1445 
Z I C J • 2) = Z I C J. 1 1 1446 
HMFP=CETACJ1 •• l.51/CCTSCJ) •• ALPHA)+BETAl 1447 

1+0.2.CETACJ) •• 1.91)/CTSCJ) •• 2.73) 1448 
2+0.023.CETACJ) •• 1.8).CTSCJ) •• 0.25) 1449 
3+I.OE-07.CETACJ) •• 2.0).CTSCJ) •• S.00) 1450 

HMFF=9.3E-06.CETACJ) •• 2.0).CTSeJ) •• 3.5) 1451 
IFCTSCJ)-10.0) 301.298.298 1452 

298 IFCHMFF-HMFP) 299.301.301 1453 
299 HMFP=HMFF 1454 
301 OTAUeJ.I)=1.5.CRCJ)-ReJ-I»/HMFP 1455 
302 ACJ.N)=EXPFe-OTAUeJ.N» 1456 
305 TSeJ)=TPCJ) 1457 
506 SCJ.N)=CBCCJ.N)-BCCJ+I.N»/COTAU(J.N)+OTAUCJ+I.N» 1458 

SeJ-I.N)=CBCCJ-I.N)-BCeJ.N»/eOTAUCJ-I.N)+OTAUeJ.N» 1459 
507 WCJ.N)=I.O-ACJ.N)-ACJ.N).OTAUeJ.N) 1460 
508 IFeWeJ.N)-I.OE-04) 509.514.514 1461 
509 WCJ.N)=0.5.COTAUCJ.N) •• 2) 1462 
514 CONTINUE 1463 

1464 
C SET CUTOFF WAVELENGTHS 1465 
540 I =J 1466 
541 IFCTCI1-TON2) 546.542.542 1467 

1468 
C OPACITY DUE TO ATOMIC SPECIES 1469 
542 CWLel.l)= 700.0.EXPFC-0.36.CTCI)-11606.5)/11606.5) 1470 

IFCCWLCI.I)-275.0) 545.560.560 1471 
545 CWLCI.Il=275.0 1472 

GO TO 560 1473 
5<46 IFCTCI1-T002) 551.547.547 1474 

1475 
C OPACITY DUE TO N2 MOLECULE 1476 
547 TCN2=5.0E-07.1.293E-03.VCI) 1477 

CWL( I • I ) = 1140. O. C C C R C I ) -RC 1-1 )) I C V C I ).1 • 293E - 03))" O. II ) 1478 
1.CI.O-EXPFC-TIME/TCN2» 1479 
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IFCC~LCI.I)-1000.0) 550.560.560 1480 
550 CVlCI.l)=1000.0 1481 

GO TO 560 1482 
1483 

C OPACITY DUE TO 02 MOLECULE 1484 
SSt TC=42S0.0-271.0.LOGFCI.293E-03. YCI)) 1485 

TC02=3.OE-07.1.293E-03.YCI) 1486 
553 IFCT(I)-TC)SS4.SS4.SS6 1487 
554 C~L(I.I)=IS00.0+TS(I).CO.163+0.074S.LOGF(DR(I).RHOZCI)11.293E-03» 1488 
554 t.Cl.0-EXPFC-TIHE/TC02) 1489 
555 GO TO 557 1490 
556 TSB=TSCI).C.0647.LOGFCRCI)-RCI-I»-0.2S-.109.LOGFC1.293E-03.Y(I») 1491 

C~LCI. 1)=3S00.0+TSB-C2000.0+TSB).EXPFC-TIME/TC02) 1492 
557 IFCCWLCI.Il-ISOO.O) 558.560.560 1493 
558 CWLCI.I)=IS00.0 1494 
560 CONTINUE 1495 

1496 
C CALCULATE ZO VALUES 1497 

ZO C 1 • 1 ) = Z I C 1 • 1 1 1 498 
604 JSTR=J+2 1499 

KD=O 1500 
60S DO 670 L=J. JSTR 1501 

TRCL1=TCLl 1502 
IF(TCLl-8.0E+04) 607.668.668 1503 

607 KD=KD+I 1504 
IFCKD-IJ 608.608.609 1505 

608 HS=L-l 1506 
609 IFCOTAU(L.IJ-I.OJ 610.668.668 1507 
C SELECT TRCL)= TEHPERATURE OF RADIATION TRAVERSING ZONE L 1508 
610 LIH=L-l 1509 
61 I T AUSUH = o. 0 I 5 1 0 
6 1 5 00 630 NN = I • LI M I 51 1 
616 H=L-NN 1512 
617 TAUSUM=TAUSUM+DTAUCH.I) 1513 
620 IFCTAUSUM-0.7J 630.627.627 1514 
627 TRCL)=TCMJ 1515 
628 IFCH-2) 630.630.638 1516 
630 CONTINUE 1517 

IFCTCLJ-2500.0) 631.632.632 1518 
631 TRCL)=TRCL-I) 1519 

GO TO 637 1520 
632 EPTSUH=O.O 1521 

EPSUH=O.O 1522 
00 635 1=3.LlH 1523 
EPTSUH=EPTSUM+TCI).DTAUCI.IJ 1524 
EPSUH=EPSUH+DTAUCI.l) 1525 
IFCT(I)-2500.0) 636.636.635 1526 

635 CONTINUE 1527 
636 TRCL)=EPTSUH/EPSUH 1528 
637 H=2 1529 
638 I Z=H+ 1 1530 
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639 DO 646 I=IZ.L 1531 
640 IF(TR(L).CWLCI.I)-2.0E+08) 641.641.644 1532 
641 ZI(I.2)= EXPF((-3.41E-08.CWLCI.l).TRC L )+2.5E-25.C(CWLCI.l).TRCL 1533 
641 2» •• 3».EXPFC-3.07E+13/CCCWLCI.t).TR( L » •• 1.8») 1534 
642 GO TO 646 1535 
644 ZICI.2J=7.61E+22/CCCWLel.l).TRCL » •• 3) 1536 
646 CONTINUE ~537 

ZMAX=ZIeM+l.2) 1538 
ZOeLo1)=ZI(M+I.2) 1539 

647 IFCL-M-l) 668.663.650 :540 
C CORREC TI ON FOR I MTERMED I ATE ZUNES. 541 
650 IZ=M+2 1542 
651 CWLTST=CWLCM+I.l) 1543 
652 DO 660 NZ=IZ.L 1544 
653 IFCCWLCNZ.l)-CWLTST) 654.654.657 1545 
654 IFCNZ-L) 660.655.668 1546 
655 ZOCL.l)=1.0 .1547 
656 GO TO 660 1548 
657 ZOCL,I)=Z)CNZ.2)/ZMAX 1549 
658 CWLTST=CWLCNZ.l) 1550 
659 ZMAX=ZICNZ.2) 1551 
660 CONTINUE 1552 
663 )FCZOCL. I)-ZICL. I» 670.668.668 1553 
668 ZOCL.I)=ZI(L.l) 1554 
670 CONTINUE 1555 
671 IFCDTAUeJ.l)-1.0E-04) 672.674.674 1556 
672 A(J.l )=DTAUeJ.l) 1557 
673 GO TO 675 1558 
674 ACJol )=1. O-AeJ.l) 1559 
675 IFeSCJ.l)-1.69E+38) 8675)8675.677 1560 
8675 1F((BBCJ.l).A(J+l.l)-2.0.S~J.l).weJ+I.I))-BCCJ+I.I).ACJ+1.1).0.01) 1561 
8675 1 677.680.680 1562 
677 S(J.l)=O.O 1563 
678 BBCJ.I)=BCeJ+l. I) 1564 
679 BBeJ.2)=BCCJ.I) 1565 
680 IFeS(J-I.I)-1.69E+38) 8680.8680.681 1566 
8680 I F C ( BB e J - 1 • I ). A e J. 1 ) - 2. O. S e J - 1 • 1 ). we J. 1 )) - BC e J. 1 ) It A e J • 1 ) • O. 0 I ) 1 567 
8680 I 681.684.684 1568 
681 S (J -1 • 1 ) = O. 0 1569 
682 BBeJ-I.I)=BC(J.I) 1570 
683 BBCJ-l.2)=BC(J-I.l) 1571 
684 IF C J - 2) 900. 900.916 1572 
9 0 0 I F( BC C 1 • 1 ) - BC C 2. 1 )) 91 5. 916 • 91 6 1 57 3 
915 B8(1.2)=8C(1.I) 1574 
916 T(J)=SAYEI4 1575 

CWUJ.l )=SAYEI5 1576 
C CALCULATE TEMPORARY FLUXS 1577 
831 JSTR=J+2 1578 
832 IFeJSTR-LZR) 834.834.833 1579 
833 JSTR=LZR 1580 
834 DO 842 N=I.NSZ 1581 
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835 FITCJSTR+I.N)=FICJSTR+l.N) 1582 
836 00 838 L=I.JSTR 1583 
837 K=JSTR-L+I 1584 
838 F1TCK.N)=FITCK+I.N). ZICK+I.N)+BBCK.I).C ACK+I.N»-2.0. SCK.N) 1585 
838 2. ~CK+l.N) :586 
839 FOTCI.N)=FITCI.N). ZICI.N)+8BCI.2).C ACI.N))+2.0. Sel.N) 1587 
839 2. ~CI.N) 1588 
840 00 841 K=2.JSTR 1589 
841 FOTCK.N)=FOTCK-I.N).CR2CK-I)/R2CK)). lOCK.N) 1590 
841 2+BBCK.2).C ACK.N»+2.0. SCK.N). ~CK.N) 1591 
841 3+CI.0-CR2CK-I)/R2eK»).FITCK.N)* lICK.N) :592 
842 CONTINUE :593 
C SPECTRAL SUMMATION 1594 
726 FOTJP2=0.0 1595 
727 FOTJPl=O.O 1596 
728 FOTJl=O.O 1597 
729 FOTJMI=O.O 1598 
730 FITJZ=O.O 1599 
731 FITJMI=O.O 1600 
732 FITJM2=0.O 1601 
733 FITJM3=0.O 1602 
734 00 742 N=I.NSZ 1603 
735 FOTJP2=FOTJP2 + FOTCJ+2.N) , 1604 
736 FOTJPI=FOTJPI + FOTCJ+I.N) 1605 
737 FOTJl=FOTJZ + FOTCJ.N) 1606 
738 FOTJMI=FOTJMI + FOTeJ-I.N) 1607 
739 FITJZ=FITJZ + FITCJ.N) 1608 
740 FITJMl=FITJMI + FITCJ-I.N) 1609 
741 FITJM2=FITJM2 + FITCJ-2.N) 1610 
742 FITJM3=FITJM3 + FITeJ-3.N) 1611 

FOCJ.2)=FOTJl 1612 
FleJ.2)=FITJZ 1613 

C CALCULATE FLUX DERIVATIVES 1614 
743 IFeJ-LZR+l) 744.745.746 1615 
744 FMMCJ+2)=eFOTJP2 -FOSeJ+2»)/eTPCJ)-T(J» 1616 
745 FMeJ+l)=CFOTJPl -FOSeJ+l»/(TPCJ)-TeJ» 1617 
746 FZeJ)=eFOTJZ-FOSCJ»/eTPeJ)-TCJ» 1618 
747 HZeJ)=eFITJZ-FISeJ»/eTPeJ)-TeJ» 1619 
748 IFeJ-l) 755.755.749 1620 
749 FPeJ-I)=(FOTJMl -FOSeJ-I»/(TPeJ)-TeJ» 1621 
750 HP(J-I)=eFITJMI-FISCJ-l»/CTP(J)-TeJ» 1622 
751 IFeJ-2) 755.755.752 1623 
752 HPpeJ-2)=(FITJM2-FIS(J-2»/eTPeJ)-T(J» 1624 
753 IFeJ-3) 755.755.754 1625 
754 HPPPCJ-3)=eFITJM3-FISeJ-3»/CTPeJ)-TeJ» 1626 
C RETURN RIPPLE ZONE PARAMETERS TO NORMAL VALUES 1627 
755 00 768 N=I.NSZ 1628 

BBeJ.N)=SAVEI 1629 
BBeJ-I.N)=SAVE2 1630 
SeJ.N)=SAVE3 1631 
SeJ-l.N)=SAVE4 1632 
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OTAUCJ.Nl=SAYE5 1633 
ACJ.Nl=SAYE6 1634 
VCJ.Nl=SAYE7 1635 
ZICJ.Nl=SAYE9 1636 
ZJ(J-l.Nl=SAYE9 1637 
ZOeJ.Nl=SAYE10 1639 
lOeJ+I.Nl=SAYEII 1639 
9CeJ.Nl=SAYEI2 1640 
TSeJl=SAYEI3 1641 
ZOCJ+2.Nl=SAYEI6 1642 
BBeJ.2)=SAYE17 1643 
BBeJ-I.2)=SA.YEI9 1644 

769 CONTINUE 1645 
769 CONTINUE 1646 
C GENERALIZED COEFFICIENT ROUTINE DEC 6.1963 1647 
770 DO 799 K=I,LZR 1648 
771 IFCK-I) 772.772.775 1649 
772 OMMe 1 )=0. 0 1650 

01=0.0 1651 
773 OM(I)=O.O 1652 
774 GO TO 780 1653 
775 01=1.0 1654 

IFCK-2) 777.776.779 1655 
776 OMM(2)=0.0 1656 
777 GO TO 779 1657 
778 OMMCK)=CO.5*R2CK)/ZMASCK»*FMMCK) 1658 
779 1-01*CO.5*R2CK-I)/ZMASCK»*~MCK-I) 1659 
779 OMCK)= CO.5*R2CK)/ZHASCK»wFHCK) 1660 
779 1-01*CO.5*R2CK-11/ZHASCK»*CFZCK-I)-HZCK-I» 1661 
790 OZCK)= CO.5*R2CK)/ZMASCK»*CFZCK1-HZCK» 1662 
790 1-01*CO.5*R2CK-l1/ZMASCK»*£FPCK-ll-HPCK-I» 1663 
780 2+COETCK)/OT)+COPTCK)/C2.*OT»*CVCK)-VRCK» 1664 
781 OPCK)= CO.5*R2CK)/ZMASCK»*CFPCK)-HP(K» 1665 
781 1-01*CO.5*R2(K-l)/ZHASCK»*C-HPPCK» 1666 
782 OPPCK)=CO.5*R2CK)/ZHASCK»*C-HPPCK» 1667 
782 1-01*CO.5*R2CK-l)/ZMASCK»*C-HPPPCK-l» 1668 
799 CONT INUE 1669 
790 OPPCLZR-l )=0. 0 1670 
791 OPCLZR)=O.O 1671 
792 OPPCLZR)=O.O 1672 
C BLOCK 900 SOLUTION OF HATRIX 1673 
900 CN(1)=DPC1)/DZCl) 1674 
901 ON(I)=DPP(I)/OZ(I) 1675 
902 EN(ll=-RESOUECI)/DZCIl 1676 
903 BN(2)=OZC21-DHC21*CNCI) 1677 
904 CNC21=COP(2)-DM(2)tONCI)/BNC2) 1679 
905 DN(2)=OPPC2)/BN(2) 1679 
906 EN(2)=-CRESDUEC21+0MC21tENCI1)/BNC2) 1690 
807 DO 811 K=3.LZR 1681 
808 BNCK)=eozeKl-OMCKltCNCK-Il-OMMCK)tDNeK-21+0MMCK1*CNCK-21*CNCK-I» 1682 
809 CNCK)=COPCKl-OMCKltONCK-I)+OMMCK)*CNCK-2)*ONCK-I»/BNCK) 1683 
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810 DNCK)=DPPCK)/8NCK) 
811 ENCK)=-CRESDUECK)+DMCK).ENCK-l)-DMMCK).CNCK-2).ENCK-I)+DMMCK).ENCK 
811 1-2»/BNCK) 
812 QNCLZR-I)=O.O 
813 BNCLZR)=DMCLZR)-DMMCLZR).CNCLZR-2) 
814 CNCLZR)=CDZCLZR)-DMMCLZR).DNCLZR-2»/BNCLZR) 
815 DNCLZR)=O.O~ 
816 ENCLZR)=-CRESDUECLZR)+DMMCLZR).ENCLZR-2)/BNeLZR) 
819 RETURN 
820 END 
C VERSION C ENTRY ROUTINE 

STARTING MODEL IS READ IN FROM DATA CARDS GENERATED 
BY THE X-RAY DEPOSIT ROUTINE ON UNIYAC 1107 

• FORTRAN 
SUBROUTINE ENTRY 

C STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM 
2 DCI)=O.O 

TEE=3.0E+04 
READ INPUT TAPE 5. 9277.RUNIDI.RUNID2.TReNNI).TRCNN2).ENERGY.TIME. 

IFX.CK.RCK).DRCK).TCK).RHOZCK).ueK).ECK).RUNIOl.RUNI02.K=I.IOO) 
9277 FORMATC2A6.IP5EI3.3/CI4.IP6EII.3.2A5» 

LZ=IOO 
YD=CS 
WKT=ENERGY/4.18E+19 
TOO2=7100.0.EXPFceO.43429.LOGFCRHOZ(99)/1.293E-03»/5.3) 
TON2=15000.0.EXPF(CO.43429.LOGFeRHOZe99)/1.293E-03»/4.8) ,~ 

1019 00 1033 K=I.I00 
1026 VCK)=I.O/RHOZCK) 

YReK)=VCK) 
1027 L=K 

TSCK)=T(K) 
R2CL)=ReUu2 

1029 RzeL)=Reu 
1030 RReu=1. 0 

TRCK)=T(K) 
ZMASCK)=CRHOZeK)/3.0).ceRZeL) •• 3)-CRZeL-l) •• 3» 
OU=UCU-UCL-I) 
QCK)=-CVD/C2.0.YCK»).OU.ABSFCOU) 
Q(I)=-CVD/C2.0.YCI»).UCI).ABSFCU(I» 
IFCQCK» 2233.1033.1033 

2233 QCtO =0.0 
1033 CONT INUE 

ZMASCI)=RHOZ(I).CRCI)·.3)/3.0 
1034 WRITE OUTPUT TAPE 6.1035.TDN2.TD02.RN2.R02.WKT .CK.RCK).RHOZCK). 

1034 lVCKJ.TCK).UCK).QCK).ZMASCK).DRCK).DPPCK).DTAUCK.l).TAUCK.l).K=I. 
1100) 

1035 FORMATCIH .10HINPUT DATA. IOX.5HTDN2=OPF7. 1. 10X.5HTD02=OPF6. 1.5X. 
1035 14HRN2=IPE9.2.5X.4HR02=IPE9.2.5X.4HWKT=OPF7.2114H K .2X.4HRCL) 

I .7X.7HRHOZCK).4X.4HYCK).7X.4HTCK1.7X.4HUCL).7X.4HQCK1.7X.7HZMAS 
ICK).4X.5HDRCK).7X.6HENGCK).5X.7HDTAUCK).4X.3HTAUIICI4.IPIIEII.4» 

T( 101 )=TC I 00) 
1000 RETURN 

END 
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